Distribución Poisson-Pascal generalizada utilizando el algoritmo de Panjer
Poisson-Pascal Generalized Distribution using the Panjer’s Algorithm
Abstract (en)
Panjer’s algorithm used in the calculation actuarial basis taking class distributions (a,b), presents a recursive formula for calculating function distribution of sums of random variables in a model of collective risk. If the secondary distribution in this model is the ETNBD, Compound Poisson distribution is named PoissonPascal, this is a family of distributions very used in the mathematics of insurance and can generate models statistically appropriate. It illustrates the methodology application to a data set of a portfolio of policies cars, in addition the algorithm is implemented using the statistical software R.Abstract (es)
References
Escalante, C. (2006), ‘Distribuciones clase (a,b) y algoritmo de panjer’, Matemáticas: Enseñanza Universitaria 14(2).
Escalante, C. & Gerardo, A. (2004), ‘Aspectos básicos del modelo de riesgo colectivo’, Matemáticas: Enseñanza Universitaria 12(2).
Hess, K., Liewald, A. & Schmidt, K. (2002), ‘An extension of panjer’s recursion’,ASTIN BULLETIN 32(2), 283 – 297.
Kuon, S., Reich, A. & Reimers, L. (1987), ‘Panjer vs kornya vs de pril: a comparison from a practical point of view’, ASTIN BULLETIN 17(2), 183 – 191.
Meyer, P. (1970), Probabilidad y Aplicaciones Estadísticas, Fondo Educativo Interamericano.
Mood, A., Graybill, F. & D., B. (1974), Introduction to the Theory of Statistics, McGraw-Hill.
Nagle, K., Saff, E. & Snider, A. (2004), Ecuaciones Diferenciales y problemas con valores en la frontera, Pearson.
Panjer, H. (1981), ‘Recursive evaluation of a family of compo un distributions’, ASTIN BULLETIN 12(1), 22 – 26.
Panjer, H., Brockett, L. & Golden, L. (1996), ‘Flexible purchase frequency mode- ling’, Journal of Marketing Research 33(1), 94 – 107.
Rinco´n, L. (2007), Introducción a la Teoría del Riesgo, Departamento de Matemáticas. Facultad de Ciencias UNAM.
Ross, S. (1997), Introduction to Probability Models, Academic Press.
Sundt, B. & Jewell, W. (1987), ‘Further results on recursive evaluation of com- pound distributions’, ASTIN BULLETIN 12(1), 27 – 39.
Vegas, A. (1998), ‘Algunos aspectos actuariales que surgen en las aplicaciones del reglamento de ordenación y supervisión de los seguros privados’, Universidad Complutense de Madrid .
Vilar, J. & Vegas, A. (1999), ‘Estimación de la provisión de estabilización y del recargo técnico sobre primas a partir del ajuste de una distribución de poisson compuesta para el número de siniestros’, Universidad Complutense de Madrid.
Walhin, J.-F. (2000), ‘Recursions for actuaries and applications in the field of rein- surance and bonus-malus systems’, Universite catholique de Louvain. Institut de statistique. .
Willmot, G. (1988), ‘Sundt and jewell’s family of discrete distributions’, ASTIN BULLETIN 18(1), 17 – 39.
How to Cite
License
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.