Recuperación de imágenes usando modelos auto-regresivos condicionales: CAR e IAR
Image recovery using conditional autoregressive models: CAR and IAR
Resumen (es)
Este artículo realiza la estimación Bayesiana de campos aleatorios gausianos de Markov. En particular, se propone realizar un análisis de dependencia espacial por medio de un grafo que caracteriza las intensidades observadas de una imagen con un modelo ampliamente utilizado en estadística espacial y geoestadística conocido como modelo autorregresivo condicional (CAR por sus siglas en inglés). Este modelo es útil para obtener distribuciones conjuntas multivariadas de un vector aleatorio basado en especificaciones condicionales univariadas. Estas especificaciones condicionales se basan en las propiedades de Markov, de modo que la distribución condicional de un componente del vector aleatorio depende solo de un conjunto de vecinos, definido por el grafo. Los modelos autorregresivos condicionales son casos particulares de campos aleatorios de Markov y se utilizan como distribuciones \textit{a priori}, que combinadas con la información contenida en los datos de la muestra (función de verosimilitud), inducen una distribución \textit{a posteriori} en las que se basa la estimación. El modelo CAR tiene un caso particular llamado IAR, en el cual, la distribución \textit{a priori} no es propia. En este artículo se aplica ambos modelos haciendo una comparación entre ellos. Todos los parámetros del modelo se estiman en un entorno completamente Bayesiano, utilizando el algoritmo Metropolis-Hastings. Los procedimientos completos de estimación posterior se ilustran y comparan utilizando varios ejemplos artificiales. Para estos experimentos, el modelo CAR y el modelo IAR se comporta muy favorablemente con imágenes homogéneas
Resumen (en)
This article performs Bayesian estimation of Gaussian Markov random fields. In particular, it is proposed to perform a spatial dependency analysis by means of a graph that characterizes the observed intensities of an image with a model widely used in spatial statistics and geostatistics known as the conditional autoregressive model (CAR). This model is useful for obtaining multivariate joint distributions from a random vector based on univariate conditional specifications. These conditional specifications are based on the Markov properties, so that the conditional distribution of a component of the random vector depends only on a set of neighbors, defined by the graph. Conditional autoregressive models are particular cases of random Markov fields and are used as \textit{a priori} distributions, which, combined with the information contained in the sample data (likelihood function), induce a \textit{a posteriori} distribution on which the estimate is based. The CAR model has a particular case called IAR, in which the \textit{a priori} distribution is not proper, in this article both models are applied making a comparison between them. All model parameters are estimated in a completely Bayesian environment, using the Metropolis-Hastings algorithm. The complete estimation procedures are illustrated and compared using various artificial examples. For these experiments, the CAR model and the IAR model performed very favorably with homogeneous images.
Referencias
Banerjee, S., P. Carlin, B. & E. Gelfand, A. (2004), Hierarχcalmodel∈gandanalysisofspatialdata′,Cha±anandHallCRCMonographsonStatisticalandAppliedProbability;101.Besag,J.(1974),Spatial interaction and the statistical analysis of lattice systems', Journal of the Royal Statistical Society. Series B (Methodological) 36(2), 192-236.*http://www.jstor.org/stable/2984812
Besag, J. (1986), Onthestatisticalanalysisofdirtyπctures′,JournaloftheRoyalStatisticalSociety.SeriesB(Methodological)48,259-302.Besag,J.&Higdon,D.(1999),Bayesian analysis of agricultural _eld experiments', Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(4), 691-746. *https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00201
Besag, J. & Kooperberg, C. (1995), Onconditionaland∫r∈sicau→regressions′,Biometrika82(4),733-746.⋅hps:/doi.org10.1093/biomet82.4.733Chen,C.-C.&Huang,C.-L.(1993),Markov random _elds for texture classi_cation', Pattern Recognition Letters 14(11), 907- 914. *http://www.sciencedirect.com/science/article/pii/0167865593901557
Cross, G. R. & Jain, A. K. (1983), Markovrandomeldre⊨′,I∃ETransactionsonPaernAnalysisandMaχ≠Intelli≥ncePAMI-5,25-39.Ellio,P.&Wartenberg,D.E.(2004),Spatial epidemiology: Current approaches and future challenges'.
Givens, G. H. & Hoeting, J. A. (2012), Computational statistics, 2 edn, John Wiley & Sons, Hoboken, NJ, USA. Halim, S. (2008), Modiedisingmodelfor≥≠rat∈gb∈aryima≥s′,JurnalInformatika8.Horiguχ,T.,Honda,Y.&Miya,M.(1997),Restoration of digital images of the alphabet by using ising models', Physics Letters A 227(5), 319 -324. *http://www.sciencedirect.com/science/article/pii/S0375960197000807
LeSage, J. P. & Thomas-Agnan, C. (2015), Interpret∈gspatialeconometricorig∈-dest∈ationflow⊨′,JournalofRegionalScience55(2),188-208.⋅hps:/onl∈elibrary.wi≤y.comdoi|/|10.1111jors.12114Liu,S.&C∞per,D.B.(2010),Ray markov random _elds for image-based 3d modeling: Model and e_cient inference', pp. 1530-1537.
Mao, J. & Jain, A. K. (1992), Texture_cationandsegmentationusingμ<iresolutionsiμ<a≠ousau→regressive⊨′,PaernRecognition25(2),173-188.Morris,R.D.,Descombes,X.&Zerubia,J.(1996),The ising/potts model is not well suited to segmentation tasks', pp. 263-266.
Qian, W. & Titterington, D. M. (1991), Mt̲mensionalmarkovcha∈⊨forima≥res′,JournaloftheRoyalStatisticalSociety:SeriesB(Methodological)53(3),661-674.⋅hps:/rss.onl∈elibrary.wi≤y.comdoi|/|10.1111j.25176161.1991.tb01855.xRue,H.&Held,L.(2005),Gaussian Markov random _elds: Theory and applications', 104. *http://dx.doi.org/10.1201/9780203492024
Van Leemput, K., Maes, F., Vandermeulen, D. & Suetens, P. (1999), Au→matedmodel-basedtissue_cationofmrima≥softhebra∈′,I∃ETransactionsonMedicalImag∈g18(10),897-908.VerHoef,J.,Peterson,E.,H∞ten,M.,Hanks,E.&Fort∈,M.-J.(2017),Spatial autoregressive models for statistical inference from ecological data', Ecological Monographs .
Wall, M. M. (2004), Aclosel∞katthespatialstructureimpliedbytheCARandSAR⊨′,JournalofStatisticalPla∩∈gandInference121(2),311-324.⋅hp:/www.sciencedirect.comscienceartic≤πiS0378375803001113Ξng,W.,Deng,N.,Ξn,B.,Chen,Y.&Zhang,Z.(2019),Investigation of a novel automatic micro image-based method for the recognition of animal _bers based on wavelet and markov random _eld', Micron 119, 88 -97. *http://www.sciencedirect.com/science/article/pii/S0968432818304797
Cómo citar
Licencia
Los autores mantienen los derechos sobre los artículos y por tanto son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes:
Reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).
Comunicaciones en Estadística está bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)