Cuantificación de variantes genéticas utilizando modelos jerárquicos bayesianos
Quantification of Genetic Variants using Bayesian Hierarchical Models
Abstract (en)
In molecular biology, functional studies play an important role in the characterization of variants or mutations in the human genome by experimenting with animal models (e.g., fish embryos). These experiments, which consist in genetically modifying the embryos by injecting mRNA, are characterized by being destructive, time consuming and generate few information. We propose and illustrate, with real data, a bayesian methodology for the statistical analysis of such experiments. This methodology provides comparable results to those observed at the molecular level.
Abstract (es)
En biología molecular, los estudios funcionales son útiles para la caracterización de variantes o mutaciones en el genoma humano vía experimentación con modelos animales (embriones de peces, por ejemplo). Estos experimentos consisten en modificar genéticamente dichos embriones inyect\'andolos con mol\'eculas de ácido ribonucleico mensajero (mRNA, en inglés) y se caracterizan por ser destructivos, tomar mucho tiempo y generar poca información. En este trabajo se propone e ilustra, con datos reales, una metodología para el análisis estadístico de este tipo de experimentos utilizando un enfoque Bayesiano.
How to Cite
License
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)

Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.




