Comparación de la regresión GINI con la regresión de mínimos cuadrados ordinarios y otros modelos de regresión lineal robustos
Comparison of Gini Regression with OLS Regression and other Robust Linear Regression
Resumen (es)
En este trabajo se compara la regresión de Gini con la regresión OLS y otros métodos de regresión robustos, del tipo L (LAV, combinaciones lineales de estadísticos de orden), del tipo M (M de Huber, basado en el concepto de máxima verosimilitud) y del tipo MM (basado en la minimización de un estimador M). La comparación de los métodos se realiza vía simulación bajo diferentes escenarios. Los resultados encontrados vía simulación muestran que la regresión de Gini tiene un mayor grado de robustez en comparación con la regresíon OLS al estimar los coeficientes de regresión ante la presencia de datos atípicos, pero su robustez es menor que la de los métodos de estimación robustos LAV, M de Huber y MMResumen (en)
Referencias
Aelst, V. S., W. G. & Zamar, H. R. (2013), ‘Robust and efficient estimation of the residual scale in linear regression.’, Journal of Multivariate Analysis 116, 278–296.
Bassett, G., J. & Koenker, R. (1978), ‘Asymptotic theory of least absolute error regression.’, Journal of the American Statistical Association 73, 618–622.
Bianco, M. A., G. M. B. y. Y. J. (2005), ‘Robust estimation for linear regression with asymmetric errors.’, The Canadian Journal of Statistics 33, 511–528.
Birkes, D. & Dodge, Y. (1993), Alternative Methods of Regression, 1 edn, John Wiley & Sons Inc., New York.
Boente, G. & Fraiman, R. (1989), ‘Robust Nonparametric Regression Estimation.’, Journal of Multivariate Analysis 29, 180–198.
Borroni, C. G. & Cazzaro, M. (2006), ‘Some developments about a new nonparametric test based on Gini’s mean difference.’, Statistica & Applicazioni 3, 29–44.
Borroni, C. & Zenga, M. (2006), ‘A test of concordance based on Gini’s mean difference.’, Communications in Statistics - Theory and Methods 16, 289–308.
Boscovich, R. (1757), ‘De literaria expeditione per pontificiam ditioned. et. synopsis amplioris opens, ac habeniur plura ejus ex exemplaria etiam sensorium impressa.’, Bononiensi Scientiarum el Anum Instituto Atque Academia Commentarii 4, 353–396.
Casella, G. & Berger, R. L. (2002), Statistical Inference, 2 edn, Duxbury, New York.
David, H. A. (1968), ‘Gini’s Mean Difference Rediscovered.’, Biometrika 55, 573–575.
Denby, L., a. L. W. A. (1977), ‘Robust Regression Estimators Compared via Monte Carlo.’, Communications in Statistics-Theory and Methods 6, 335–362.
Douglas, C., M. E. A. P. & Vining, G. G. (2002), Introducción al análisis de regresión lineal, 2 edn, John Wiley & Sons, New York.
E. Schechtman, E., Y. S. (2003), ‘A Family of Correlation Coefficients Based on Extended Gini.’, Journal of Economic Inequality 1, 3083–3088.
Edna, S., Y. S. & Artsev, Y. (2008), ‘ Who Does Not Respond in the Household Expenditure Survey: An Exercise in Extended Gini Regressions.’, American
Statistical Association Journal of Business & Economic Statistics 26, 329– 344.
Edna, S., Y. S. & Pudalov, T. (2011), ‘Gini’s multiple regressions: two approaches and their Interaction.’, International Journal of Statistics 69, 67–99.
Edna, S. & Yitzhaki, S. (2007), ‘ A Measure Of Association Based On Gini’s Mean Difference.’, Communications in Statistics-Theory and Methods 16, 207–231.
Edna, S. & Yitzhaki, S. (2013), Gini’s Multiple Regressions, 1 edn, John Wiley & Sons, New York.
Hampel, F. R., R. E. M. R. P. J. & Stahel, W. A. (1986), Robust statistics: The approach based on inuence functions., 1 edn, Wiley, New York.
Hettmansperger, T. P. (1984), Statistical inference based on ranks., 1 edn, John Wiley & Sons, New York.
Huber, P, J. (1973), ‘ Regression: Asymptotics, Conjectures, and Monte Carlo.’, Annals of Statistics 1, 799–821.
Huber, P. J. (1981), Robust statistics., 1 edn, John Wiley & Sons, New York.
Hurdle, W. (1984), ‘Robust Regression Function Estimation.’, Journal of Multivariate Analysis 14, 169–180.
Iachan, R. (1985), ‘Robust Designs for Ratio and Regression Estimation.’, Journal of Statistical Planning and Inference 11, 149–161.
T.E., D. (2005), ‘Least Absolute Value Regression: Recent Contributions.’, Journal of Statistical Computation and Simulation 75, 263–286.
Cómo citar
Licencia
Los autores mantienen los derechos sobre los artículos y por tanto son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes:
Reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).
Comunicaciones en Estadística está bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)