##plugins.themes.bootstrap3.article.main##

Álvaro Arley Castaño Colorado Juan Carlos Correa Morales

Resumen

La modelación de datos de conteo se hace típicamente usando el modelo Poisson, en el cual se asume equidispersión (ED), en donde la media y la varianza son iguales. Cuando esta condición no es fácil de justificar, han surgido diferentes alternativas, unas más flexibles que otras, en cuanto a la capacidad de manejar tanto sobredispersión (OD) como subdispersión (UD). Una de ellas es el modelo COM-Poisson el cual fue propuesto recientemente y ha sido evaluado en términos inferenciales (Sellers2010). Esta investigación quiere cuantificar la calidad predictiva del modelo COM-Poisson con respecto al modelo Poisson, y así establecer la pérdida en la eficiencia que se tiene al ajustar el modelo inadecuado cuando la propiedad de equidispersión no es satisfactoria. El estudio de simulación efectuado determinó que al ajustar el modelo inadecuado, ya sea en sobre o subdispersión, no representa, en la mayoría de los casos, ni una ganancia o pérdida en cuanto a la calidad predictiva de los valores ajustados. Dos estudios de caso aplicados a la ecología ilustran los resultados obtenidos

##plugins.themes.bootstrap3.article.details##

Palabras Clave

Datos de Conteo, Modelos Lineales Generalizados, Eficiencia Relativa, Regresión Poisson, Regresión Conway-Maxwell-Poisson, Capacidad Predictiva, Dispersión

Referencias
Armstrong, B. J. S. & Collopy, F. (1992), `Error Measures For Generalizing About
Forecasting Methods: Empirical Comparisons', 8(1), 69-80.
*http://dx.doi.org/10.1016/0169-2070 (92)90008-W

Cameron, A. C. & Trivedi, P. K. (2003), Essentials of Count Data Regression,
in B. H. Baltagi, ed., `A Companion to Theoretical Econometrics', Blackwell
Publishing Ltd, pp. 331-348.
*http://dx.doi.org/10.1002/9780470996249.ch16

Cameron, A. & Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge
University Press, New York.

Dobson, A. J. (2002), An introduction to generalized linear models, 2nd ed. edn,
Chapman & Hall/CRC.
*http://dx.doi.org/10.1002/sim.1493
Famoye, F. (1993), `Restricted generalized poisson regression model', Communications
in Statistics - Theory and Methods 22(5), 1335-1354.
*https://doi.org/10.1080/03610929308831089

Francis, R., Geedipally, S. R., Guikema, S. D., Dhavala, S. S., Lord, D. & Larocca,
S. (2012), `Characterizing the Performance of the Conway-Maxwell Poisson
Generalized Linear Model', Risk Analysis 32(1), 167-183.
*https://doi.org/10.1111/j.1539-6924.2011.01659.x

Geedipally, S. R., Guikema, S. D., Dhavala, S. S. & Lord, D. (2008), Characterizing
the Performance of the Bayesian Conway-Maxwell Poisson Generalized Linear
Model, in A. S. Association, ed., `Joint Statistical Meetings', p. 22.

Guikema, S. D. & Go_elt, J. P. (2008), `A Flexible Count Data Regression Model
for Risk Analysis', Risk Analysis 28(1), 213-223.
*http://doi.wiley.com/10.1111/j.1539-6924.2008.01014.x
Hilbe, J. (2011), Negative Binomial Regression, 2nd ed. edn, Cambridge University
Press.
*https://doi.org/10.1017/CBO9780511973420

Jowaheer, V. & Mamode, N. (2009), `Estimating Regression E_ects in Com Poisson
Generalized Linear Model', World Academy of Science, Engineering and
Technology 29(1), 1040-1044.

Lord, D., Geedipally, S. R. & Guikema, S. D. (2010), `Extension of the Application
of Conway-Maxwell-Poisson Models: Analyzing Tra_c Crash Data Exhibiting
Underdispersion', Risk Analysis 30(8), 1268-1276.
*http://dx.doi.org/10.1111/j.1539-6924.2010.01417.x

Lord, D., Guikema, S. D. & Geedipally, S. R. (2008), `Application of the
Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes', Accident Analysis and Prevention 40(3), 1123-1134.
*https://doi.org/10.1016/j.aap.2007.12.003

McCullagh, P. & Nelder, J. (1972), Generalized linear models, 2nd ed. edn, Chapman
& Hall/CRC, New York.

Miller, J. (2007), Comparing Poisson, Hurdle and ZIP model _t under varying degrees of Skew and Zero-Ination, Ph.d. thesis, University of Florida.

Minka, T. P., Shmueli, G., Kadane, J. B., Borle, S. & Boatwright, P. (2003),
Computing with the COM-Poisson distribution, Technical report, Carnegie
Mellon University, Pittsburgh, PA.
*http://repository.cmu.edu/statistics/170/

R Core Team (2017), R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria.
*https://www.R-project.org/
S_aez-Castillo, A. & Conde-S_anchez, A. (2013), `A hyper-Poisson regression model for overdispersed and underdispersed count data', Computational Statistics
& Data Analysis 61, 148-157.
*http://dx.doi.org/10.1016/j.csda.2012.12.009

Sellers, K. F., Borle, S. & Shmueli, G. (2012), `The COM-Poisson model for count data: A survey of methods and applications', Applied Stochastic Models in
Business and Industry 28(2), 104-116.
*http://dx.doi.org/10.1002/asmb.918

Sellers, K. F. & Shmueli, G. (2010a), `A exible regression model for count data',
Annals of Applied Statistics 4(2), 943-961.
*http://www.jstor.org/stable/29765537

Sellers, K. F. & Shmueli, G. (2010b), `Predicting Censored Count Data with COMPoisson
Regression', SSRN Electronic Journal p. 18.
*http://dx.doi.org/10.2139/ssrn.1702845

Shmueli, G., Minka, T., Kadane, J., Borle, S. & Boatwright, P. (2005), `A Useful
Distribution for Fitting Discrete Data: Revival of the Conway-MaxwellPoisson
Distribution', Journal of the Royal Statistical Society. Series C (Applied
Statistics) 54(1), 127-142.
*https://doi.org/10.1111/j.1467-9876.2005.00474.x

Winkelmann, R. (2008), Econometric Analysis of Count Data, 5th ed. edn,
Springer-Verlag, Berlin.
Cómo citar
Castaño Colorado , Álvaro A., & Correa Morales, J. C. (2020). Comparación del modelo COM-Poisson y el modelo Poisson. Comunicaciones En Estadística, 13(2), 9-32. Recuperado a partir de https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/6255
Sección
Artículos