Publicado
2015-07-01

Una propuesta metodológica para elicitar el vector de parámetros π de la distribución Multinomial

A methodological proposal to elicit the vector of parameters π of the multinomial distribution

DOI: https://doi.org/10.15332/s2027-3355.2015.0001.05
Andrés Felipe Flórez Rivera
Juan Carlos Correa Morales

Archivos adicionales

Resumen (es)

Cuando no existe información previa o es muy costosa obtenerla, las distribuciones a priori informativas brindan una opción práctica y “económica” que sirven de base para el inicio de un proyecto o un estudio en particular. En este trabajo presentamos una propuesta metodológica para llevar a cabo un proceso de elicitación que permite extraer el conocimiento de un experto e incorporarlo como una distribución a priori del vector de parámetros  de la distribución Multinomial. Aquí  presentamos la metodología propuesta acompañada de una ilustración y finalizamos con algunas conclusiones y recomendaciones.

Palabras clave (es): distribución a priori, distribución Dirichlet, estadística Bayesiana probabilidad subjetiva.

Resumen (en)

When there is no preliminary information or is too costly to obtain it, the informative priors provide a practical option and “ economic ” that serving as a basis for initiating a project or a particular study. In this paper we present a methodology for carrying out elicitation process that allow derives from an expert knowledge and incorporate it as a prior distribution of the parameter vector π of the Multinomial distribution. The proposed methodology accompanied by an application and end with some conclusions and recommendations.

Referencias

Bromaghin J., 1993, Sample Size Determination for Interval Estimation of Multinomial Probabilities, The American Statistician, Vol 47, 203-206, No. 3.

Budnitz, J., Boore, M., Apostolakis, G., Cluff, S., Coppersmith, J., Cornell, A. y Morris, A., 1995, Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts, US Nuclear Regulatory Commission, Vol 1, 1-278. http://www.osti.gov/scitech/servlets/purl/479072, tomado el 19/08/2014

Chaloner, K., Duncan T., 1983, Assessment of a Beta Prior Distribution: PM Elicitation,The Statistician, Vol 27, 174-180.

Cooke R, A. y Goossens L.H.j, 2008, TU Delft Expert Judgment Data Base, Reliability Engineering and System Safety. Vol. 93.

Correa J, C., 2011, Elementos de Estadística Bayesiana, Notas de Clase.

DeGroot M., 2004, Optimal Statistical Decisions, John Wiley & Sons.

Dickey J, Jiang J. y Kadane J., 1983, Bayesian methods for multinomial sampling with missing data using multiple hypergeometric functions,State University of New York at Albany Department of Mathematics and Statistics: Research Report, 6/83 - Nro. 15.

Duran B., Booker J., 1988, A Bayes Sensitivity Analysis when Using the Beta Distribution as a Prior,IEEE Transactions on Reliability, Vol 37, 239-247, No. 2.

Elfadaly F., Garthwaite P. 2012, On Eliciting Some Prior Distributions for Multinomial Models ,Department of Mathematics and Statistics, The Open University, UK.

Fox, B., 1966, A Bayesian approach to reliability assessment,Memorandum RM-5084-NASA, The Rand Corporation, Santa Monica, CA, 23 pp.

Garthwaite P., Kadene J. y O’Hagan A., 2005, Statistical Methods for Eliciting Probability Distributions,Journal of the American Statistical Association, Vol. 100, 680-700, No.470.

Gill J. y Walker L., 2005, Elicited Priors for Bayesian Model Specifications in Political Science Research, University of California, Davis

Gilless J. y Fried S., (2000), Generating beta random rate variables from probabilistic estimates of fireline production times., Annals of Operations Research, Vol. 95, 205-215.

Gosling P., 2008, On the elicitation of continuous, symmetric, unimodal distributions,Cornell University Library, http://arxiv.org/pdf/0805.2044v1.pdf, tomado el 21/08/2013.

Gross A., 1971, The Application of Exponential Smoothing to Reliability, Technometrics, Vol. 13, 877-883 No. 4.

Hanneman R., 1995, Simulation Modeling and Theoretical Analysis in Sociology, Sociological Perspectives: Computer Simulations and Sociological Theory, Vol. 38, 457-462, No. 4.

Hogarth R., 1975, Cognitive Processes and the Assessment of Subjective Probability Distributions,Journal of the American Statistical Association, Vol. 70, 271-289, No.350.

Hughes G. y Madden L., 2002, Some methods for eliciting expert knowledge of plant disease epidemics and their application in cluster sampling for disease incidence, Crop Protection, Vol. 21, 203-215.

Jenkinson D., 2005, The Elicitation of Probabilities - A Review of the Statistical Literature.

Johnson N., Kotz S., Balakrishnan N., 1997, Discrete Multivariate Distributions, John Wiley & Sons, Inc, primer edición, 31-83.

Kadane J., Wolfson L., 1998, Experiences in Elicitation, The Statistician, Vol. 47, 3-19, No. 1.

Kynn M, 2006, Designing ELICITOR: Software to graphically elicit expert priors for logistic regression models in ecology, Department of Mathematics and Statistics, Fylde College, Lancaster University.

León C., Vázquez F. y León C., 2003, Elicitation of Expert Opinion in Benefit Transfer of Environmental Goods, Environmental and Resource Economics, Vol 26, 199-210.

Oakley J., Daneshkhah A. y O’Hagan A., 2010, Nonparametric Prior Elicitation using the Roulette Method,School of Mathematics and Statistics, University of Sheffeld, UK.

O’Hagan A., 1998, Eliciting Expert Beliefs in Substantial Practical Applications, Journal of the Royal Statistical Society, Series D, Vol. 47, 21-35, No. 1.

O’Hagan A., 2005, Research in Elicitation, University of Sheffield, UK,

R Core Team, 2014, A Language and Environment for Statistical Computing, R Foundation for Statistical Computing http://CRAN.R-project.org

Regazzini E., 1999, Approximation of Laws of Multinomial Parameters by Mixtures of Dirichlet Distributions with Applications to Bayesian Inference, Acta Applicandae Mathematicae, vol 58, 247-264.

Ruiz, A., 2004, Apuntes de Estadística Bayesiana.

Stevens J. y O’Hagan A., 2002, Incorporation of genuine prior information in cost-effectiveness analysis of clinical trial data, International Journal of Technology Assessment in Health Care, Vol 18 782-790.

Tversky A., Kahneman D., 1974, Judgment under Uncertainty: Heuristics and Biases, Science, New Series, Vol. 185, No. 4157 1124-1131.

Umesh, G., A 1988, comparison of Two Elicitation Methods for a Prior for a Binomial Parameter ,Management Science, Vol. 34, 784-790.

van Noortwijk J., Dekker R., Cooke R., Mazzuchi T., 1992, Expert Judgment in Maintenance Optimization, IEEE Transactions on reliability, Vol 41, 427-432, No. 3.

Waterman M., Martz H., Walter R., 1976, Fitting Beta Prior Distributions in Bayesian Reliability Analysis A Sat of TabSss,Los alamos scientific laboratory of the University of California, LA-6395-MS.

Weiler H., 1965, The use of incomplete beta functions for prior distributions in binomial sampling, Technometrics, Vol 7, 335-347.

Wendy S., 2008, Computer Simulation through an Error-Statistical Lens, Synthese, Vol. 163, 371-384, No. 3.

Winkler, R., 1967a, The Assessment of Prior Distributions in Bayesian Analysis, Journal of the American Statistical Association.Vol. 62, 776-800.

White I, Pocock S y Wang D, 2005, Eliciting and using expert opinions about influence of patient characteristics on treatment effects: a Bayesian analysis of the CHARM trials,Statistics in Medicine, Vol. 24, 3805-3821.

Zapata R., O’Hagan A. Soares L, 2012, Eliciting expert judgements about a set of proportions, http://tonyohagan.co.uk/academic/pdf/Dirichlet.pdf, Consultado: Enero 21 de 2014 a las 21:45.

Cómo citar

Flórez Rivera, A. F., & Correa Morales, J. C. (2015). Una propuesta metodológica para elicitar el vector de parámetros π de la distribución Multinomial. Comunicaciones En Estadística, 8(1), 81-97. https://doi.org/10.15332/s2027-3355.2015.0001.05