Pronóstico del COVID-19 en Colombia utilizando Redes Neuronales Recurrentes con celdas de gran memoria de corto plazo y unidades recurrentes cerradas
Forecasting of COVID-19 in Colombia using recurrent neural networks with long short term memory and gated recurrent units
Abstract (en)
On march 6 of 2020, the first case of COVID-19 was reported in Colombia. This virus, declared a public health emergency of international importance, has affected different sectors. There is a boom in the number of studies that make forecasts in various aspects that have to do with this virus. The present work shows the theoretical aspects of recurrent neuronal networks and his use to create a 60-day forecast on cumulative cases, cumulative deaths and cumulative recovered, available from march 6 2020 to march 6 2022. Neural networks with GRU and LSTM cells along with the classic RNN were used to make these forecasts.
Abstract (es)
El 6 de marzo del 2020, el primer caso de COVID-19 fue reportado en Colombia, este virus, declarado como una emergencia de salud pública de importancia internacional ha afectado diferentes sectores. Existe un auge en cuanto al número de estudios que buscan hacer pronósticos en diversos aspectos que tienen que ver con este virus. El presente trabajo muestra los aspectos teóricos de las redes neuronales recurrentes y se utilizan para crear una predicción de 60 días sobre los casos acumulados, fallecidos acumulados y recuperados acumulados disponibles desde el 6 de marzo del 2020 hasta el 6 de marzo del 2022. Redes neuronales con celdas GRU y LSTM junto con las clásicas RNN fueron utilizadas para hacer estos pronósticos.
References
J. Brownlee. Deep Learning for Time Series Forecasting. Machine Learning Mastery, fourth edition, 2018.
Y. Buitrago. Pronóstico del COVID-19 en Colombia. https://github.com/YeisonABL/Pronostico_Colombia_COVID19, 2022. [En línea; acceso 6/marzo/2022].
U. o. T. Computer Science. Lecture 15: Exploding and Vanishing Gradients. https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15%20Exploding%20and%20Vanishing%20Gradients.pdf, 2022. [En l ́ınea; acceso Enero/2022].
I. et al. Comparative analysis and forecasting of covid-19 cases in various european countries with arima, narnn and lstm approaches. ELSEVIER, 2020.
K. A. et al. Forecasting of covid-19 using deep layer recurrent neural networks (rnns) with gated recurrent units (grus) and long short-term memory (lstm) cell. ELSEVIER, mar 2021a.
R. K. et al. Covid-19 in iran: Forecasting pandemic using deep learning. Hindawi, 2021b.
M. C. K. A. R. R. J. Filippo Maria Bianchi, Enrico Maiorino. Recurrent Neural Networks for Short-Term Load Forecasting. Springer, first edition, 2017.
U. . M. Johns Hopkins. Coronavirus Resource Center . https://coronavirus.jhu.edu/, 2022. [En línea; acceso Enero/2022].
M. S. Ke-Lin Du. Neural Networks and Statistical Learning. Springer, 2019.
MIT. MIT 6.S191: Recurrent Neural Networks and Transformers. https://youtu.be/QvkQ1B3FBqA, 2022a. [En línea; acceso Enero/2022].
MIT. Mit 6.s191: Recurrent neural networks and transformers, mar 2022b. URL https://www.youtube.com/watch?v=QvkQ1B3FBqA&t=2101s&ab_channel=AlexanderAmini. Youtube.
G. Nacional. Datos Abiertos de Colombia. https://www.datos.gov.co/, 2022. [En línea; acceso 6/marzo/2022].
S. rekja Hanumanthu. Role of intelligent computing in covid-19 prognosis: A state-of-the-art review. Pre-proof, 2020.
Y. Tamura. Simple RNN: the first foothold for understanding LSTM. https://data-science-blog.com/blog/2020/06/17/simple-rnn-the-first-foothold-for-understanding-lstm/, 2020. [En línea; acceso 6/marzo/2022].
A. M. S. H.-G. Zimmermann. Recurrent neural networks are universal approximators. International Journal of Neural Systems, 17, 2007. DOI: https://doi.org/10.1142/S0129065707001111
How to Cite
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.