Asociación de polimorfismos de nucleótido simple y de haplotipos para el gen de la Leptina con la ganancia de peso en la raza bovina blanco orejinegro usando técnicas bayesianas
Association of single nucleotide polymorphism and haplotypes of the Leptine gen with the weight gain in a Creole colombian bovine breed using Bayesian techniques
Additional Files
Abstract (en)
This paper presents a Bayesian methodology for association study of single nucleotide polymorphism (SNP) and haplotypes with a special interest in animal production. In the first stage, we propose a Bayesian linear model to select the SNPs that have an effect on the average of the genetic value in the response variable. In a second stage, after the identification of haplotypes compatible with genotypes of influence in the first stage, we discuss the application of a general linear model and a logistic regression model in order to identify those haplotypes having a higher association with the increasing of genetic values. In both stages, Bayesian methodologies are used when appropriate and Monte Carlo simulation methods are implemented in order to generate Markov Chains whose stationary distribution corresponds to the conditional posterior distribution of the parameters of interest. The practical application is subject to animal production in a Colombian bovine breed.
Abstract (es)
References
Chen, K., McLellan, M. D., Michael, L. D. & Ding, L. (2007), ‘Polyscan: An automatic indel and snp detection approach to the analysis of human resequencing datag’, Genome Research 17, 659 – 666.
Gamerman, D. & Lopes, H. F. (2006), Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman and Hall/CRC.
Gelfand, A. E. & Smith, A. F. M. (1990), ‘Sampling-based approaches to calculating marginal densities’, Journal of the American Statistical Society 85, 398 – 409.
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003), Bayesian Data Analysis, 2 edn, Chapman and Hall/CRC.
Gelman, A. & Shirley, K. (2010), Handbook of Markov Chain Monte Carlo, CRC, chapter Inference from Simulations and Monitoring Convergence.
Geman, S. & Geman, D. (1984), ‘Stochastic relaxation, gibbs distributions, and the bayesian restoration of images’, IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721 – 741.
Gilks, W. R. (1992), Derivative-free Rejection Sampling for Gibbs Sampling.
Guerra, C. & Navarro, P. (2005), ‘Brown adipose tissue specific insulin receptor knockout shows diabetic phenotype without insulin resistance’, Journal of Clinical Investigation 108, 1205 – 1213.
Henderson, C. R. (1986), ‘Estimation of variances in animal model and reduced animal model for single traits and single records’, Journal of Dairy Science 69(5), 1394–1402.
Iniesta, R. & Moreno, V. (2008), Monte Carlo and Quasi-Monte Carlo Methods, Springer Berlin Heidelberg, chapter Assessment of Genetic Association using Haplotypes Inferred with Uncertainty via Markov Chain Monte Carlo, pp. 529 – 535.
Iniesta, R. & Moreno, V. (2010), BayHap: Bayesian analysis of haplotype association using Markov Chain Monte Carlo.
Ji, S., Willis, G. M., Scott, R. R. & Spurlock, M. E. (1998), ‘Partial cloning and expression of the bovine leptin gene’, Animal Biotechnology 9, 1–4.
Jurinke, C., Denissenko, M., Oeth, P., Ehrich, M., Dirk, v. B. & Cantor, C. (2006), ‘A single nucleotide polymorphism based approach for the identification and characterization of gene expression modulation using massarray’, Mutation Research 573, 83–95.
Lunn, D. & Thomas, A. (2000), ‘Winbugs a bayesian modelling framework: concepts, structure, and extensibility’, Statistics and Computing 10, 325 – 337.
Martínez, S. & Escobedo, M. (2003), ‘Situación de los recursos zoogen éticos en colombia’, Ministerio de Agricultura y Desarrollo Rural.
Migon, H. S. & Gamerman, D. (1999), Statistical Inference: An Integrated Approach, Arnold.
Nickerson, D. A., Tobe, V. A. & Taylor, S. L. (1997), ‘Polyphred: automating the detection and genotyping of single nucleotide substitutions using fluorescence based resequencing’, Nucleic Acids Research p. 27452751.
Pierce, B. A. (2005), Genetics - A Conceptual Approach, W. H. Freeman.
R Development Core Team (2011), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
Soria, L. & Corva, P. (2004), ‘Factores genéticos y ambientales que determinan la terneza de la carne bovina’, Archivos Latinoamericanos de Producción Animal 12, 73–88.
Taylor, G. (1997), Laboratory Methods for the Detection of Mutations and Poly- morphisms in DNA, CRC Press.
West, M. (1985), Bayesian Statistics 2, Oxford University Press, chapter Gene- ralized Linear Models: Outlier Acommodation, Scale Parameters and Prior distributions (with discussion), pp. 461 – 484.
How to Cite
License
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)

Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.




