Elicitación de la distribución multinomial a partir de varios expertos
Multinomial distribution elicitation from various experts
Abstract (en)
The objective of this work is to implement an elicitation process to estimate the vector of parameters π to multinomial distribution through of Delphi method. Quantification of opinions and beliefs from multiple experts are used to obtain a single distribution that represents the knowledge of all experts that is a different result to get the sum of individual contributions.
Abstract (es)
El objetivo de este trabajo es implementar una metodologa de elicitacion mediante el metodo Delphi que permita estimar el vector de parametros de la distribucion multinomial a partir de la cuanticacion de opinion y creencias de multiples expertos, buscando as conseguir un resultado diferenciador y de mas valor que la suma de aportaciones individuales para obtener una unica distribucion que represente el conocimiento del conjunto de expertos.
References
Barrera, C., Sandoval, J. & Sep´ulveda, F. (2011), ‘Estimaci´on por intervalos de probabilidad a posteriori para la proporci´on de estudiantes desertores.’, Revista Tecno L´ogicas 27, 75–87.
Chu, H. & Hwang, G. (2008), ‘A Delphi-based approach to developing expert systems with the cooperation of multiple experts.’, Expert Systems with Applications 34, 2826–2840.
Clemen, R. & Winkler, R. (1999), ‘Combining probability distributions from experts in risk analysis.’, Risk Analysis 19, 187–203.
Dickey, J. (1983), ‘Multiple Hypergeometric functions: probabilistic interpretations of statistical uses.’, Journal of the American Statistical Association 78, 628– 637.
Elfadaly, F. & Garthwaite, P. (2012), ‘On eliciting some prior distributions for Multinomial Models.’, Department of Mathematics and Statistics, The Open University, UK .
Flórez, A. & Correa, J. (2015), ‘Una propuesta metodol´ogica para elicitar el vector de par´ametros π de la distribuci´on Multinomial.’, Comunicaciones en Estad´ıstica 8, 81–97.
Garthwaite, P., Kadane, J. & O’Hagan, A. (2005), ‘Statistical methods for eliciting probability distributions.’, Journal of the American Statistical Association 100, 680–700.
Gelman, A., Carlin, J., Stern, H. & Rubin, D. (2003), Bayesian data analysis, 2 edn, Chapman & Hall/CRC, New York.
Goossens, L., Cooke, R., Hale, A. & Rodic-Wiersma, L. (2008), ‘Fifteen years of expert judgement at TUDelft.’, Safety Science 46, 234–244.
Instituto, N. S. (2014), ‘(Instituto Nacional de Salud) Protocolo de vigilancia en salud p´ublica.’, http://www.ins.gov.co/lineas-de-accion/SubdireccionVigilancia/sivigila/Protocolos %20SIVIGILA/PRO %20Malaria.pdf, tomado el 08/01/2016 .
Johnson, N., Kotz, S. & Balakrishnan, N. (1997), ‘Discrete multivariate distributions.’, John Wiley & Sons 1, 31–83.
Johnson, R. & Wichern, D. (2002), Applied Multivariate statistical analysis, 5 edn, Prentice Hall, Upper Saddle River, New Jersey.
Landeta, J. (1999), El m´etodo Delphi: una t´ecnica de previsi´on para la incertidumbre, 1 edn, Editorial Ariel, Barcelona.
Mendoza, M. & Regueiro, P. (2011), Estad´ıstica bayesiana, Instituto Teconol´ogico de M´exico, New York.
Proyecto., M. C. (2015), ‘(Proyecto Malaria Colombia) Vigilancia de susceptibilidad a insecticidas de Anopheles (Nyssorhynchus) darlingi, An. (N.) Nuneztovari y An. (N.) Albimanus en localidades
centinelas de los departamentos de Antioquia, Cauca, Choco,
C´ordoba y Valle del Cuaca’, http://www.ins.gov.co/temas-deinteres/Memorias %20Malaria/10.Resistencia %20a %20insecticidas.pdf, tomado el 08/01/2016. .
Ruiz, A. (2004), ‘Apuntes de estad´ıstica bayesiana.’,
http://www.angelfire.com/ex/proba/Notas/Bayes2.pdf, tomado el 11/03/2016 .
Toma, A. (2007), ‘Minimum Hellinger distance estimators for some Multivariate models: influence functions and breakdown point results.’, C. R. Acad. Sci. Paris, Ser I 345, 353–358.
Yau, Y. & Chiu, S. (2015), ‘Combating building illegality in Hong Kong: a policy Delphi study.’, Habitat International 48, 349–356.
Zapata, R., O’Hagan, A. & L, S. (2012), ‘Eliciting expert judgements about a set of proportions.’, Journal of Applied Statistics .
How to Cite
License
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.