Jonathan Martinez https://orcid.org/0000-0003-2592-1888

Laurent Mourot https://orcid.org/0000-0001-9486-3090


The study of the autonomic nervous system (ans) has become relevant due to its response during sports training. Exercise itself improves ans status, but overtraining induces a state of chronic fatigue, unbalancing ans activity. Therefore, it is necessary to find other methods to improve the sporting performance. The mental image (mi) has been shown as an effective method to improve the performance of certain motor conditions in athletes, exhibiting the activation of the ans. mi sessions could be used as a training method; thus, the objective of this research was to identify if there is a significative activation of the ans during and after mi sessions. The heart rate of 15 subjects was monitored during a physical session and during an mi session of a walk in two different speeds. Data was analyzed through anova and it did not show significative changes in the heart rate variability during or after the mi. It’s possible that the result of this research was influenced by the mental effort, the lack of training in mi, and the time used to obtain the data to analyze the heart rate variability.


Palabras Clave
Achten, J. & Jeukendrup, A. (2003). Heart Rate Monitoring Applications and Limitations. Sports
Med, 33(7), 517-538. DOI: https://doi.org/10.2165/00007256-200333070-00004
Aubert, A., Seps, B. & Beckers, F. (2003). Heart Rate Varibility in Athletes. Sport Med, 33(12),
889-919. DOI: https://doi.org/10.2165/00007256-200333120-00003
Borrensen, J. & Lambert, M. (2008). Autonomic Control of Heart Rate during and after Exercise.
Sports Med, 38(8), 633-645. DOI: https://doi.org/10.2165/00007256-200838080-00002

Collet, C., Di Rienzo, F., Hoyek, N. & Guillot, A. (2013). Corrélats neurophysiologiques de
l’imagerie motrice. Movement & Sport Sciences, 82, 7-19. DOI:10.1051/sm/2010068
Decety, J., Jeannerod, M., Durozard, D. & Baverel, G. (1993). Central Activation of Autonomic
Effectors during Mental Simulation of Motor Actions in Man. Journal of Physiology,
461(1), 549-563. DOI: https://doi.org/10.1113/jphysiol.1993.sp019528
Demougeot, L., Normand, H., Denise, P., & Papaxanthis, C. (2009). Discrete and Effortful
Imagined Movement Do Not Specifically the Autonomic Nervous System. PLoS ONE,
4(8), e6769. DOI:10.1371/journal.pone.0006769 
Di Rienzo , F., Blache, Y., Kanthack, T., Monteil , K., Collet, K., & Guillot, A. (2015). Short-
term effects of integrated motor imagery practice on muscle activation and force
performance. Neurosciences, 305, 146-156. DOI:
Dong, J. (2016). The role of heart rate variability in sport physiology. Experimental and
Therapeutic Medicine, 11, 1531-1536. DOI: https://doi.org/10.3892/etm.2016.3104
Fortes, L. S., Freitas-Júnior, C. G., Paes, P. P., Vieira, L. F., Nascimento-Júnior, J. R. A., Lima-
Júnior, D. R. A. A., & Ferreira, M. E. C. (2018). Effect of an eight-week imagery training
programme on passing decision-making of young volleyball players. International
Journal of Sport and Exercise Psychology, 1–9. DOI:10.1080/1612197x.2018.1462229 
Gamelin, F., Baquet, G., Berthoin, S., & Bosquet, L. (2006, August 08). Validity of the Polar
S810 to Measure R-R Intervals in Children. Training & Testing, 29(2), 134-138. DOI:
Gamelin, F., Berthoin, S., & Bosquet, L. (2005). Validity of the Polar S810 Heart Rate Monitor
to Measure R-R Intervals at Rest. Medicine & science in sports & exercise, 38(5), 887-
893. DOI:10.1249/01.mss.0000218135.79476.9c

Gregg, M., Hall, C. & Andrew Butler. (2010). The MIQ-RS: a suitable option for examining
movement imagery ability. ECAM, 7(2), 249-257. DOI:10.1093/ecam/nem170
Guillot, A. & Collet , C. (2008). Construction of the Motor Imagery Integrative Model in Sport:
A review and theoretical investigation of motor imagery use. International Review of
Sport and Exercise Psychology, 1(1), 31-44. DOI:10.1080/17509840701823139
Guillot, A. & Collet, C. (2005). Contributions from neurophysiological and psychological
methods to the study of motor imagery. Brain Research Reviews, 50, 387-397. DOI:
Guillot, A. & Collet, C. (2010). Duration of Mentally Simulated Movement: A Review. Journal
Motor & Behavior, 37(1), 10-20. doi:10.3200/jmbr.37.1.10-20 
Kazuo , O. & Takashi, M. (2004). Autonomic Nervous System Activities During Motor Imagery
in Elite Athletes. Journal of Clinical Neurophysiology, 21(3), 170-179. DOI:
Kazuo, O. Kasai, T. & Maeshima, T. (2000). Aotunomic Response Specificity during Motor
Imagery. Journal of Physiological Anthropology and Applied Human Science, 19(6), 255-
261. DOI: https://doi.org/10.2114/jpa.19.255
Lauer, M. (2009, Avril). Autonomic function and prognosis. Cleveland Clinic Journal of
Medicine, 76(2), S18-S22. DOI:10.3949/ccjm.76.s2.04
Masshour, G. & Engelhard, K. (2019). Neuroscience and Anaesthesiology. Editorial Oxford.
Pinto, T., Russo, M., Lemos, T., Domingues, C. & Aureliano, L. (2017). Is heart rate variability
affected by distinct motor imagery strategies? Physiology & Behavior, 189-195. DOI:

Schmitt, L., Regnard, J. & Millet , G. (2015). Monitoring Fatigue Status with HRV Measuring in
Elite Athletes: An Avenue Beyond RMSSD. Frontiers in Physiology, 6(343).
Scott, M., Graham, K. & Davis, G. (2017, Mai 29). Cardiac Autonomic Responses during
Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time
Intervals - A Review. Frontiers in Physiology. DOI:
Tarvainen, M., Lipponen, J., Niskanen, J. & Ranta-aho, P. (2019, January 14). Kubios HRV
User’s Guide. Available at www.kubios.com / support@kubios.com DOI:
Cómo citar
Martinez, J., & Mourot, L. (2020). Analysis of heart rate variability during a mental image session of a walk. Cuerpo, Cultura Y Movimiento, 10(2). https://doi.org/10.15332/2422474x/6229