Publicado
2025-04-28

Identificación de dimensiones de bienestar y calidad de vida a partir de modelamiento de temas del lenguaje natural de las personas

Identification of dimensions of well-being and quality of life through natural language processing modeling of people's discourse

Identificação das dimensões de bem-estar e qualidade de vida a partir da modelagem de temas da linguagem natural das pessoas

DOI: https://doi.org/10.15332/21459169.10248
Guberney Muñetón Santa https://orcid.org/0000-0002-5194-1914
Guillermo León Moreno Soto https://orcid.org/0000-0003-1400-710X

Resumen (es)

Este artículo aborda la complejidad que conlleva medir la calidad de vida y el bienestar, reconociendo las limitaciones de los enfoques tradicionales que a menudo no logran capturar las dimensiones subjetivas y contextuales que realmente importan a las personas. A través de una metodología de modelamiento de temas correlacionados, se identificaron las dimensiones clave de la calidad de vida a partir de respuestas textuales de encuestas realizadas en Medellín, Colombia. Los resultados revelan mayores frecuencias en términos como “salud”, “pobre de espíritu” y “vivir bien”. Además, el modelamiento de temas sugiere que la calidad de vida está relacionada con aspectos tanto objetivos como subjetivos del bienestar. De esta manera emergen dimensiones de vulnerabilidad material, necesidades básicas, bienestar espiritual, superación personal y salud integral. La discusión se centra en las implicaciones de estos hallazgos para la formulación de políticas públicas más inclusivas y efectivas, y sugiere vías para futuras investigaciones que integren enfoques cualitativos y cuantitativos en la evaluación del bienestar y la calidad de vida.

Palabras clave (es): bienestar, calidad de vida, Medellín, modelamiento de temas, procesamiento de lenguaje natural

Resumen (en)

This article addresses the complexity of measuring quality of life and well-being, recognizing the limitations of traditional approaches that often fail to capture the subjective and contextual dimensions that truly matter to people. Through a correlated topic modeling methodology, key dimensions of quality of life were identified based on textual responses from surveys conducted in Medellín, Colombia. The results reveal higher frequencies for terms such as "health," "poor in spirit," and "living well." Moreover, the topic modeling suggests that quality of life is related to both objective and subjective aspects of well-being. Dimensions of material vulnerability, basic needs, spiritual well-being, personal growth, and holistic health emerge from the analysis. The discussion focuses on the implications of these findings for more inclusive and effective public policy formulation and suggests pathways for future research that integrate both qualitative and quantitative approaches in the evaluation of well-being and quality of life.

Palabras clave (en): quality of life, well-being, topic modeling, natural language processing, Medellín

Resumen (pt)

O presente artigo aborda a complexidade de medir a qualidade de vida e o bem-estar, reconhecendo as limitações das abordagens tradicionais que muitas vezes não conseguem capturar as dimensões subjetivas e contextuais que realmente importam para as pessoas. Através de uma metodologia de modelagem de temas correlacionados, foram identificadas as dimensões-chave da qualidade de vida a partir de respostas textuais de questionários realizados em Medellín, Colômbia. Os resultados revelam maiores frequências em termos como "saúde", "pobre de espírito" e "viver bem". Além disso, a modelagem de temas sugere que a qualidade de vida está relacionada tanto a aspectos objetivos quanto subjetivos do bem-estar. Emergiram dimensões de vulnerabilidade material, necessidades básicas, bem-estar espiritual, superação pessoal e saúde integral. A discussão foca nas implicações desses achados para a formulação de políticas públicas mais inclusivas e eficazes, e sugere caminhos para futuras investigações que integrem abordagens qualitativas e quantitativas na avaliação do bem-estar e da qualidade de vida.

Palabras clave (pt): Medellín, modelagem de temas, processamento de linguagem natural, qualidade de vida
Guberney Muñetón Santa, Universidad de Antioquia

Profesor e investigador del Instituto de Estudios Regionales (iner), Universidad de Antioquia, Medellín, Colombia. Doctor en Ingeniería Electrónica y de Computación. Grupo de Investigación Recursos Estratégicos, Región y Dinámicas Socioambientales (rerdsa). 

Guillermo León Moreno Soto, Universidad de Antioquia

Investigador del Instituto de Estudios Regionales, Universidad de Antioquia. Magíster en Desarrollo. Grupo de Investigación Recursos Estratégicos, Región y Dinámicas Socioambientales (rerdsa) y Grupo de Investigación - Escuela de Prospectiva y Desarrollo Empresarial de la Institución Universitaria Esumer, Medellín, Colombia. 

Referencias

Acosta, A. (2013). El Buen Vivir: Sumak Kawsay, una oportunidad para imaginar otros mundos. Abya Yala.

Alkire, S. (2007). The missing dimensions of poverty data: An introduction. Oxford Development Studies, 35(4), 347-359. DOI: https://doi.org/10.1080/13600810701701863

Alkire, S. y Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of Public Economics, 95(7-8), 476-487. DOI: https://doi.org/10.1016/j.jpubeco.2010.11.006

Alkire, S., Roche, J. M., Ballon, P., Foster, J., Santos, M. E. y Seth, S. (2015). Multidimensional poverty measurement and analysis. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199689491.001.0001

Alkire, S. y Santos, M. E. (2014). Multidimensional poverty index: A new approach. Social Indicators Research, 112(2), 109-129. DOI: https://doi.org/10.1007/s11205-013-0257-3

Andreoni, A., Chang, H. y Estevez, I. (2021). The missing dimensions of the human capabilities approach: Collective and productive. The European Journal of Development Research, 33, 179-205. DOI: https://doi.org/10.1057/s41287-020-00356-y

Angulo, R., Díaz, Y., & Rodríguez Pardo, R. (2016). The Colombian multidimensional poverty index: Measuring poverty in a public policy context. Social Indicators Research, 127, 1–38. DOI: https://doi.org/10.1007/s11205-015-0964-z

Arrow, K. (1951). Social choice and individual values. Yale University Press.

Atkinson, A. B. (2019). Measuring poverty around the world. Princeton University Press. DOI: https://doi.org/10.1515/9780691191898

ATD Fourth World y University of Oxford. (2019). Hidden dimensions of poverty. https://www.atd-quartmonde.org/wp-content/uploads/2019/12/Hidden-Dimensions-of-Poverty-20-11-2019.pdf

Beck, V., Hahn, H. y Lepenies, R. (2020). Dimensions of poverty: Measurement, epistemic injustices, activism (Vol. 2). Springer Nature. DOI: https://doi.org/10.1007/978-3-030-31711-9

Bessell, S. (2020). The individual deprivation measure: A gender-sensitive approach to multidimensional poverty measurement. En M. Sawer, F. Jenkins y K. Downing (Eds.), How gender can transform the social sciences: Innovation and impact (pp. 137-145). Springer. DOI: https://doi.org/10.1007/978-3-030-43236-2_14

Biggeri, M., Libanora, R., Mariani, S. y Menchini, L. (2006). Children conceptualizing their capabilities: Results of a survey conducted during the first children’s world congress on child labour. Journal of Human Development, 7(1), 59-83. DOI: https://doi.org/10.1080/14649880500501179

Bird, S., Klein, E. y Loper, E. (2009). Natural language processing with Python: Analyzing text with the Natural Language Toolkit. O’Reilly Media.

Blei, D. M. y Lafferty, J. D. (2007). A correlated topic model of science. Annals of Applied Statistics, 1(1), 17-35. DOI: https://doi.org/10.1214/07-AOAS114

Boarini, R. (2015). Wellbeing and quality of life reporting at the OECD. En Sustainable development and wellbeing: Integrating quantitative and qualitative approaches (pp. 747-761). Springer. DOI: https://doi.org/10.1007/978-94-017-9178-6_33

Busetto, L., Wick, W. y Gumbinger, C. (2020). How to use and assess qualitative research methods. Neurological Research and Practice, 2(14), 1-10. DOI: https://doi.org/10.1186/s42466-020-00059-z

Burchi, F., De Muro, P., & Kollar, E. (2014). Which dimensions should matter for capabilities? A constitutional approach. Ethics and Social Welfare, 8(3), 233–247. https://doi.org/10.1080/17496535.2014.932415 DOI: https://doi.org/10.1080/17496535.2014.932415

Burchi, F., De Muro, P., & Kollar, E. (2018). Constructing well-being and poverty dimensions on political grounds. Social Indicators Research, 137(2), 441–462. https://doi.org/10.1007/s11205-017-1618-0 DOI: https://doi.org/10.1007/s11205-017-1618-0

Burchi, F., Espinoza-Delgado, J., Montenegro, C. E., & Rippin, N. (2021). An individual-based index of multidimensional poverty for low- and middle-income countries. Journal of Human Development and Capabilities, 22(4), 682–705. https://doi.org/10.1080/19452829.2021.1964450 DOI: https://doi.org/10.1080/19452829.2021.1964450

Caicedo-Beltrán, J. F., & Rubiano, P. J. (2023). Uso de Tecnologías de Big Data para Monitorizar y Predecir Tendencias Sociales. Revista Vínculos, 20(1). https://revistas.udistrital.edu.co/index.php/vinculos/article/view/16062

Camfield, L., Crivello, G. y Woodhead, M. (2008). Wellbeing research in developing countries: Reviewing the role of qualitative methods. Social Indicators Research, 90(1), 5-31. DOI: https://doi.org/10.1007/s11205-008-9310-z

Creswell, J. W., & Poth, C. N. (2017). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). SAGE Publications.

Hassani, H., Beneki, C., Unger, S., Mazinani, M. T., & Yeganegi, M. R. (2020). Text mining in big data analytics. Big Data and Cognitive Computing, 4(1), 1. https://doi.org/10.3390/bdcc4010001 DOI: https://doi.org/10.3390/bdcc4010001

De Neve, J.-E., & Layard, R. (2023). Wellbeing: Science and policy. Cambridge University Press.

Departamento Nacional de Planeación (DNP). (2012). *Metodologías oficiales y arreglos institucionales para la medición de la pobreza en Colombia* (CONPES 150). Departamento Nacional de Planeación. https://colaboracion.dnp.gov.co/cdt/conpes/social/150.pdf

Deveaud, R., SanJuan, E., & Bellot, P. (2014). Accurate and effective latent concept modeling for ad hoc information retrieval. Document numérique, 17(1), 61–84. https://doi.org/10.3166/dn.17.1.61-84 DOI: https://doi.org/10.3166/dn.17.1.61-84

Diener, E. (1984). Subjective well-being. Psychological Bulletin, 95(3), 542-575. DOI: https://doi.org/10.1037//0033-2909.95.3.542

Diener, E., Lucas, R. E., Schimmack, U. y Helliwell, J. F. (2009). Well-being for public policy. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780195334074.001.0001

Diener, E., Oishi, S. y Lucas, R. E. (2018). Subjective well-being: Three decades of progress. Psychological Bulletin, 134(2), 276-302. https://doi.org/10.1038/s41562-018-0307-6 DOI: https://doi.org/10.1037//0033-2909.125.2.276

Easterly, W. (2014). The tyranny of experts: Economists, dictators, and the forgotten rights of the poor. Basic Books.

Ferreira, F. H. G. (2011). Poverty is multidimensional. But what are we going to do about it? The Journal of Economic Inequality, 9, 493–495. https://doi.org/10.1007/s10888-011-9193-3 DOI: https://doi.org/10.1007/s10888-011-9202-3

Fletcher, G. (2016). The philosophy of well-being: An introduction. Routledge. DOI: https://doi.org/10.4324/9781315745329

Frediani, A. A. (2019). Participatory research methods and the capability approach: Researching the housing dimensions of squatter upgrading initiatives in Salvador da Bahia, Brazil. En D. A. Clark, M. Biggeri y A. A. Frediani (Eds.), The capability approach, empowerment, and participation: Concepts, methods, and applications (pp. 261-288). Palgrave Macmillan. DOI: https://doi.org/10.1057/978-1-137-35230-9_10

Griffiths, T. L. y Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(Suppl. 1), 5228-5235. https://doi.org/10.1073/pnas.0307752101 DOI: https://doi.org/10.1073/pnas.0307752101

Grim, B., Harmel, R. y Smith, T. (2006). The data revolution: Using large datasets for comparative politics. Journal of Politics and Society, 12(3), 76-91.

Guillén, M. & Phelán, M. (2016). La medición del bienestar en América Latina. Editorial Universidad del Rosario.

Gupta, A., Kumar, P. y Singh, R. (2017). Dynamic topic modeling using recurrent neural networks for trend analysis. International Journal of Data Science. Volume 1 (Long Papers), pages 1079–1089

Hatef, E., Rouhizadeh, M., Nau, C., Xie, F., Rouillard, C., Abu-Nasser, M. y Roblin, D. (2022). Development and assessment of a natural language processing model to identify residential instability in electronic health records’ unstructured data: A comparison of 3 integrated healthcare delivery systems. JAMIA Open, 5(1), ooac006, 1 – 10. DOI: https://doi.org/10.1093/jamiaopen/ooac006

Jonsson, A., Andersson, L., Alkan Olsson, J., & Johansson, M. (2007). Defining goals in participatory water management: merging local visions and expert judgments. Journal of Environmental Planning and Management, 50(2), 257–281.

Jurafsky, D. y Martin, J. H. (2019). Speech and language processing (3rd ed.). Pearson.

Kahneman, D. y Deaton, A. (2010). High income improves evaluation of life but not emotional well-being. Proceedings of the National Academy of Sciences, 107(38), 16489-16493. DOI: https://doi.org/10.1073/pnas.1011492107

Kahneman, D. y Riis, J. (2005). Living, and thinking about it: Two perspectives on life. En F. A. Huppert, N. Baylis y B. Keverne (Eds.), The science of well-being (pp. 285-304). Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198567523.003.0011

Klugman, J., Rodríguez, F. y Choi, H. J. (2011). The HDI 2010: New controversies, old critiques. Journal of Economic Inequality, 9(2), 249-288. DOI: https://doi.org/10.1007/s10888-011-9178-z

Mahalakshmi, G., MuthuLakshmi, S. y Rajesh, S. (2017). Big Data analytics in crime analysis. International Journal of Advanced Research in Computer Science. Vol (6), 1.311 - 1319.

Manning, C. D., Raghavan, P. y Schütze, H. (2008). Introduction to information retrieval. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511809071

Mendoza, G. A., & Prabhu, R. (2000). Development of a methodology for selecting criteria and indicators of sustainable forest management: A case study on participatory assessment. Environmental Management, 26(6), 659–673. https://doi.org/10.1007/s002670010123 DOI: https://doi.org/10.1007/s002670010123

Mills, C. (2014). Veiled sentiments: Shame and the hidden dimensions of poverty. Sociology, 48(2), 290–306.

Narayan, D., Patel, R., Schafft, K., Rademacher, A. y Koch-Schulte, S. (2000). Voices of the poor: Can anyone hear us? Oxford University Press for the World Bank. DOI: https://doi.org/10.1596/0-1952-1601-6

New Economics Foundation (NEF). (2012). Measuring well-being: A guide for practitioners. NEF.

Nikolenko, S. I., Broslavsky, P., & Tishchenko, V. (2017). Topic modeling for qualitative studies. Journal of Information Science, 43(6), 864-879.

Nolan, B., & Whelan, C. T. (2011). Poverty and deprivation in Europe. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199588435.001.0001

Nussbaum, M. (2000). Women and human development: The capabilities approach. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511841286

Nussbaum, M. (2011). Creating capabilities: The human development approach. Harvard University Press. DOI: https://doi.org/10.4159/harvard.9780674061200

OECD. (2013). How's life? 2013: Measuring well-being. OECD Publishing. DOI: https://doi.org/10.1787/9789264201392-en

Pacáková, Z. (2012). Variables selection for quality of life evaluation in the European Union. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 60(7), 199-206. DOI: https://doi.org/10.11118/actaun201260070199

Porter, M. E., Stern, S., & Green, M. (2017). Social Progress Index 2017. Social Progress Imperative. Recuperado de [https://www.socialprogress.org/]

PNUD. (2010). La verdadera riqueza de las naciones: Caminos al desarrollo humano (Reporte del desarrollo humano 2010). Programa de las Naciones Unidas para el Desarrollo. http://hdr.undp.org/sites/default/files/hdr_2010_es_complete_reprint.pdf

Ravallion, M. (2011). On multidimensional indices of poverty. The Journal of Economic Inequality, 9, 235–248. https://doi.org/10.1007/s10888-011-9173-4 DOI: https://doi.org/10.1007/s10888-011-9173-4

Robeyns, I. (2005). The capability approach: A theoretical survey. Journal of Human Development, 6(1), 93-114. DOI: https://doi.org/10.1080/146498805200034266

Robeyns, I. (2017). Wellbeing, freedom, and social justice: The capability approach re-examined. Open Book Publishers. DOI: https://doi.org/10.11647/OBP.0130

Rodriguez, C. y Storer, T. (2020). Using topic modeling to analyze large datasets from social media. Journal of Data Science. Vol 18 No. 4.

Ruiz, F. (2015). Métodos cualitativos y cuantitativos en la investigación social: Un análisis crítico. Revista Mexicana de Sociología, 77(4), 661-682.

Sen, A. (1985). Commodities and capabilities. Oxford University Press.

Sen, A. (1992). Inequality reexamined. Harvard University Press.

Sen, A. (1999). Development as freedom. Knopf.

Sen, A. (2009). The idea of justice. Harvard University Press. DOI: https://doi.org/10.4159/9780674054578

Sen, A. (2017). Collective choice and social welfare. Harvard University Press. DOI: https://doi.org/10.4159/9780674974616

Sen, A. y Nussbaum, M. (Eds.). (1996). La calidad de vida. Fondo de Cultura Económica.

Sempere, J., Acosta, A., Abdallah, S. y Ortí, D. (2010). Enfoques sobre bienestar y buen vivir. Flacso.

Chidi, U. C., Onyesolu, M. O., Asogwa, D. C., & Egwu, C. V. (2024). Exploring Latent Dirichlet Allocation (LDA) in topic modeling: Theory, applications, and future directions. Newport International Journal of Engineering and Physical Sciences, 4(1), 9-16. https://doi.org/10.59298/NIJEP/2024/41916.1.1100 DOI: https://doi.org/10.59298/NIJEP/2024/41916.1.1100

Stiglitz, J. E., Sen, A. y Fitoussi, J. P. (2009). Report by the commission on the measurement of economic performance and social progress. Paris.

Taboada Villamarín, A. (2024). Big data en ciencias sociales. Una introducción a la automatización de análisis de datos de texto mediante procesamiento de lenguaje natural y aprendizaje automático. Revista CENTRA de Ciencias Sociales, 3(1), 51–75. https://doi.org/10.54790/rccs.51 DOI: https://doi.org/10.54790/rccs.51

World Bank. (2017). Monitoring global poverty: Report of the commission on global poverty. World Bank Group.

Wisor, S., Bessell, S., Castillo, F., Crawford, J., Donaghue, K., Hunt, J., Jaggar, A., Liu, A. y Pogge, T. (2014). The individual deprivation measure: A gender-sensitive approach to poverty measurement. International Women’s Development Agency Inc.

Whelan, C. T., Nolan, B. y Maître, B. (2014). Multidimensional poverty measurement in Europe: An application of the adjusted headcount approach. Journal of European Social Policy, 24(2), 183-197. DOI: https://doi.org/10.1177/0958928713517914

Voinov, A., Jenni, K., Gray, S., Kolagani, N., Glynn, P. D., Bommel, P., Prell, C., Zellner, M., Paolisso, M., Jordan, R., Sterling, E. J., Olabisi, L. S., Giabbanelli, P. J., Sun, Z., Le Page, C., Elsawah, S., BenDor, T. K., Hubacek, K., Laursen, B. K., Jetter, A. J., Basco-Carrera, L., Singer, A., Young, L. G., Brunacini, J., & Smajgl, A. (2018). Tools and methods in participatory modeling: Selecting the right tool for the job. Environmental Modelling & Software, 109, 232–255. https://doi.org/10.1016/j.envsoft.2018.08.02 DOI: https://doi.org/10.1016/j.envsoft.2018.08.028

Dimensions

PlumX

Visitas

155

Descargas

Los datos de descarga aún no están disponibles.

Cómo citar

Muñetón Santa, G. ., & Moreno Soto, G. L. . (2025). Identificación de dimensiones de bienestar y calidad de vida a partir de modelamiento de temas del lenguaje natural de las personas. Análisis, 56(105), 91-116. https://doi.org/10.15332/21459169.10248

Artículos más leídos del mismo autor/a