Cambios corticales como resultado de lesiones deportivas: Un comentario


  • Universidad Pontificia Bolivariana
  • Universidad de Antioquia
  • Universidad Autónoma de Baja California
  • Texas A&M University
  • University of Wales Trinity Saint David
  • Universidad del País Vasco


Palabras clave:

mapas corticales, disfunción propioceptiva, inhibición intracortical, control motor, dolor, variabilidad motora, neuroplasticidad


En la actualidad, el tratamiento del sistema nervioso central (SNC) y las fluctuaciones neurocognitivas como consecuencia de las lesiones deportivas se considera un área relativamente poco abordada bajo el paradigma de la neurociencia del deporte. Por ejemplo, los cambios neuronales compensatorios (como los cambios corticales del cerebro) y la carga cognitiva pueden crear un bucle de alimentación que afecta a la recuperación y a la recaída después de una lesión musculoesquelética. Aunque se han promovido varias metodologías (por ejemplo, los sistemas de mapeo cerebral, el control inhibitorio y la flexibilidad cognitiva), los déficits neuromusculares no suelen ser evaluados ni intervenidos durante las prácticas de rehabilitación. En este artículo presentamos una descripción actualizada de los cambios más relevantes del SNC después de una lesión, el concepto de mapas somatotópicos y su relación con el control motor, la inhibición intracortical y los procesos de facilitación cortical. También se cubren las estrategias de neuroplasticidad más allá de los enfoques tradicionales basados en la estructura del tejido lesionado; sin embargo, se requiere más investigación para establecer recomendaciones basadas en la evidencia para los profesionales del deporte.


Ajimsha, M. S., Shenoy, P. D., & Gampawar, N. (2020). Role of fascial connectivity in musculoskeletal dysfunctions: a narrative review. Journal of Bodywork and Movement Therapies, 24(4), 423-431.
Arendt-Nielsen, L., Graven-Nielsen, T., Svarrer, H., & Svensson, P. (1996). The influence of low back pain on muscle activity and coordination during gait: a clinical and experimental study. Pain, 64(2), 231-240.
Armijo-Olivo, S. (2018). A new paradigm shift in musculoskeletal rehabilitation: why we should exercise the brain? Brazilian Journal of Physical Therapy, 22(2), 95-96.
Baliki, M. N., Baria, A. T., & Apkarian, A. V. (2011). The cortical rhythms of chronic back pain. Journal of Neuroscience, 31(39), 13981-13990.
Baria, A. T., Baliki, M. N., Parrish, T., & Apkarian, A. V. (2011). Anatomical and functional assemblies of brain BOLD oscillations. Journal of Neuroscience, 31(21), 7910-7919.
Berth, A., Urbach, D., & Awiszus, F. (2002). Improvement of voluntary quadriceps muscle activation after total knee arthroplasty. Archives of Physical Medicine and Rehabilitation, 83(10), 1432-1436.
Bonilla, D. A., Pérez-Idárraga, A., Odriozola-Martínez, A., & Kreider, R. B. (2021a). The 4R’s framework of nutritional strategies for post-exercise recovery: A review with emphasis on new generation of carbohydrates. International Journal of Environmental Research and Public Health, 18(1), 103.
Bonilla, D. A., Moreno, Y., Rawson, E. S., Forero, D. A., Stout, J. R., Kerksick, C. M., & Kreider, R. B. (2021b). A Convergent Functional Genomics Analysis to Identify Biological Regulators Mediating Effects of Creatine Supplementation. Nutrients, 13(8), 1-25.
Bonilla, D. A., Moreno, Y., Petro, J. L., Forero, D. A., Vargas-Molina, S., Odriozola-Martínez, A., & Kreider, R. B. (2022). A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines, 10(3), 724.
Colomer-Poveda, D., Romero-Arenas, S., Hortobagyi, T., & Márquez, G. (2021). Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. Neurologia, 36(4), 285-297.
Courtney, C. A., Kavchak, A. E., Lowry, C. D., & O’Hearn, M. A. (2010). Interpreting Joint Pain: Quantitative Sensory Testing in Musculoskeletal Management. Journal of Orthopaedic & Sports Physical Therapy, 40(12), 818-825.
Cuenca-Martínez, F., Suso-Martí, L., Sánchez-Martín, D., Soria-Soria, C., Serrano-Santos, J., Paris-Alemany, A., La Touche, R., & León-Hernández, J. V. (2020). Effects of Motor Imagery and Action Observation on Lumbo-pelvic Motor Control, Trunk Muscles Strength and Level of Perceived Fatigue: A Randomized Controlled Trial. Research Quarterly for Exercise and Sport, 91(1), 34–46.
Chamari, K., & Padulo, J. (2015). 'Aerobic' and 'Anaerobic' terms used in exercise physiology: a critical terminology reflection. Sports medicine - open, 1(1), 9-9.
Dhawale, A. K., Smith, M. A., & Ölveczky, B. P. (2017). The Role of Variability in Motor Learning. Annual Review of Neuroscience, 40(1), 479-498.
Fernandes, T. L., Pedrinelli, A., & Hernandez, A. J. (2011). Muscle Injury – Physiopathology, Diagnosis, Treatment and Clinical Presentation. Revista Brasileira de Ortopedia (English Edition), 46(3), 247-255.
Galhardoni, R., Correia, G. S., Araujo, H., Yeng, L. T., Fernandes, D. T., Kaziyama, H. H., & de Andrade, D. C. (2015). Repetitive Transcranial Magnetic Stimulation in Chronic Pain: A Review of the Literature. Archives of Physical Medicine and Rehabilitation, 96(4), S156-S172.
García-Suárez, P. C., Rentería, I., Plaisance, E. P., Moncada-Jiménez, J., & Jiménez-Maldonado, A. (2021). The effects of interval training on peripheral brain derived neurotrophic factor (BDNF) in young adults: a systematic review and meta-analysis. Scientific Reports, 11(1), 8937-8951.
Gokeler, A., Benjaminse, A., Hewett, T. E., Paterno, M. V., Ford, K. R., Otten, E., & Myer, G. D. (2013). Feedback Techniques to Target Functional Deficits Following Anterior Cruciate Ligament Reconstruction: Implications for Motor Control and Reduction of Second Injury Risk. Sports Medicine, 43(11), 1065-1074.
Gomez-Pinilla, F., Vaynman, S., & Ying, Z. (2008). Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. European Journal of Neuroscience, 28(11), 2278-2287.
Goodall, S., Howatson, G., Romer, L., & Ross, E. (2012). Transcranial magnetic stimulation in sport science: A commentary. European Journal of Sport Science, 14(sup1), S332-S340.
Green, L. A., & Gabriel, D. A. (2018). The cross education of strength and skill following unilateral strength training in the upper and lower limbs. Journal of Neurophysiology, 120(2), 468–479.
Grier, T., Dinkeloo, E., Reynolds, M., & Jones, B. (2020). Sleep duration and musculoskeletal injury incidence in physically active men and women: A study of U.S. Army Special Operation Forces soldiers. Sleep Health, 6(3), 344-349.
Hall, C. N., Howarth, C., Kurth-Nelson, Z., & Mishra, A. (2016). Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 371(1705), 20150348.
Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817-828.
Hortobágyi, T., Richardson, S. P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., Dang, N., & Hallett, M. (2011). Interhemispheric plasticity in humans. Medicine and Science in Sports and Exercise, 43(7), 1188–1199.
Islam, M. R., Young, M. F., & Wrann, C. D. (2017). The Role of FNDC5/Irisin in the Nervous System and as a Mediator for Beneficial Effects of Exercise on the Brain. In B. Spiegelman (Ed.), Hormones, Metabolism and the Benefits of Exercise (pp. 93-102). Springer.
Kapreli, E., & Athanasopoulos, S. (2006). The anterior cruciate ligament deficiency as a model of brain plasticity. Medical Hypotheses, 67(3), 645-650.
Kraemer, W. J., & Looney, D. P. (2012). Underlying Mechanisms and Physiology of Muscular Power. Strength and Conditioning Journal, 34(6), 13-19.
Lapole, T., & Tindel, J. (2015). Acute effects of muscle vibration on sensorimotor integration. Neuroscience Letters, 587, 46-50.
Lepore, E., Casola, I., Dobrowolny, G., & Musarò, A. (2019). Neuromuscular Junction as an Entity of Nerve-Muscle Communication. Cells, 8(8), 906-921.
Makin, T. R., & Flor, H. (2020). Brain (re)organisation following amputation: Implications for phantom limb pain. Neuroimage, 218, 116943.
Manca, A., Hortobágyi, T., Carroll, T. J., Enoka, R. M., Farthing, J. P., Gandevia, S. C., Kidgell, D. J., Taylor, J. L., & Deriu, F. (2021). Contralateral Effects of Unilateral Strength and Skill Training: Modified Delphi Consensus to Establish Key Aspects of Cross-Education. Sports Medicine, 51(1), 11–20.
Massé-Alarie, H., Bergin, M. J. G., Schneider, C., Schabrun, S., & Hodges, P. W. (2017). “Discrete peaks” of excitability and map overlap reveal task-specific organization of primary motor cortex for control of human forearm muscles. Human Brain Mapping, 38(12), 6118-6132.
Nishikawa, K., Biewener, A. A., Aerts, P., Ahn, A. N., Chiel, H. J., Daley, M. A., & Szymik, B. (2007). Neuromechanics: an integrative approach for understanding motor control. Integrative and Comparative Biology, 47(1), 16-54.
Nishimune, H., Stanford, J. A., & Mori, Y. (2014). ROLE of exercise in maintaining the integrity of the neuromuscular junction. Muscle & Nerve, 49(3), 315-324.
Nordmark, P. F., Ljungberg, C., & Johansson, R. S. (2018). Structural changes in hand-related cortical areas after median nerve injury and repair. Scientific Reports, 8(1).
On, A. Y., Uludağ, B., Taşkiran, E., & Ertekin, C. (2004). Differential corticomotor control of a muscle adjacent to a painful joint. Neurorehabilitation and Neural Repair, 18(3), 127-133.
Paravlic A. H. (2022). Motor Imagery and Action Observation as Appropriate Strategies for Home-Based Rehabilitation: A Mini-Review Focusing on Improving Physical Function in Orthopedic Patients. Frontiers in psychology, 13, 826476.
Pinho, R. A., Aguiar, A. S., & Radák, Z. (2019). Effects of Resistance Exercise on Cerebral Redox Regulation and Cognition: An Interplay Between Muscle and Brain. Antioxidants, 8(11), 529-544.
Piskin, D., Benjaminse, A., Dimitrakis, P., & Gokeler, A. (2021). Neurocognitive and Neurophysiological Functions Related to ACL Injury: A Framework for Neurocognitive Approaches in Rehabilitation and Return-to-Sports Tests. Sports Health, 1-7.
Rice, D. A., McNair, P. J., Lewis, G. N., & Dalbeth, N. (2014). Quadriceps arthrogenic muscle inhibition: the effects of experimental knee joint effusion on motor cortex excitability. Arthritis Research & Therapy, 16(6), 502-509.
Robins, H., Perron, V., Heathcote, L., & Simons, L. (2016). Pain Neuroscience Education: State of the Art and Application in Pediatrics. Children, 3(4), 43-60.
Rosa, B. B., Asperti, A. M., Helito, C. P., Demange, M. K., Fernandes, T. L., & Hernandez, A. J. (2014). Epidemiology of sports injuries on collegiate athletes at a single center. Acta Ortopédica Brasileira, 22(6), 321-324.
Roschel, H., Gualano, B., Ostojic, S. M., & Rawson, E. S. (2021). Creatine Supplementation and Brain Health. Nutrients, 13(2), 586-596.
Rosenkranz, K., & Rothwell, J. C. (2012). Modulation of proprioceptive integration in the motor cortex shapes human motor learning. Journal of Neuroscience, 32(26), 9000-9006.
Ruddy, J. D., Cormack, S. J., Whiteley, R., Williams, M. D., Timmins, R. G., & Opar, D. A. (2019). Modeling the Risk of Team Sport Injuries: A Narrative Review of Different Statistical Approaches. Frontiers in Physiology, 10(829), 1-16.
Sakuma, K., & Yamaguchi, A. (2011). The Recent Understanding of the Neurotrophin's Role in Skeletal Muscle Adaptation. Journal of Biomedicine and Biotechnology, 2011, 1-12.
Santuz, A., Brüll, L., Ekizos, A., Schroll, A., Eckardt, N., Kibele, A., & Arampatzis, A. (2020). Neuromotor Dynamics of Human Locomotion in Challenging Settings. iScience, 23(1), 1-23.
Seidel-Marzi, O., & Ragert, P. (2020). Neurodiagnostics in sports: Investigating the athlete’s brain to augment performance and sport-specific skills. Frontiers in Human Neuroscience, 14(133), 1-8.
Sterling, P. (2012). Allostasis: A model of predictive regulation. Physiology & Behavior, 106(1), 5-15.
Sundberg, C. W., & Fitts, R. H. (2019). Bioenergetic basis of skeletal muscle fatigue. Current Opinion in Physiology, 10, 118-127.
Tidball, J. G. (2011). Mechanisms of Muscle Injury, Repair, and Regeneration. Comprehensive Physiology, 1(4), 2029-2062.
Ting, Lena H., Chiel, Hillel J., Trumbower, Randy D., Allen, Jessica L., McKay, J. L., Hackney, Madeleine, E., & Kesar, Trisha M. (2015). Neuromechanical Principles Underlying Movement Modularity and Their Implications for Rehabilitation. Neuron, 86(1), 38-54.
Vints, W., Levin, O., Fujiyama, H., Verbunt, J., & Masiulis, N. (2022). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Frontiers in neuroendocrinology, 66, 100993.
Vucic, S., & Kiernan, M. C. (2016). Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease. Neurotherapeutics, 14(1), 91-106.



Cómo citar

Jorge Mario, Jorge L., Jorge A., Salvador, Richard B., & Diego A. (2022). Cambios corticales como resultado de lesiones deportivas: Un comentario: Array. Cuerpo, Cultura Y Movimiento, 12(2).