A Calibration Function Built From Change Points: a Review
Comparison of Methods of Estimation in Regression of Cox
Abstract (en)
In this work are compared using simulation methods for estimating Breslow, Efron and exact in Cox regression, to find the estimate of the model parameters, obtaining confidence intervals by resampling the Bootstrap, Jackknife and traditional asymptotic. Are generated samples of times using the inverse of the transformation, for models of exponential regression and Weibull. It illustrates the results of the amplitudes of the confidence intervals taking as a reference the regression estimate parametric. Showing the efficiency of these intervals.
Abstract (es)
El problema de calibración no es reciente. Los trabajos en este tema fueron presentados inicialmente por Krutchkoff en la época de los 60's bajo un enfoque paramétrico y han sido ampliamente estudiados por otros autores desde diferentes enfoques. Las recientes investigaciones respecto al punto de cambio, han considerado supuestos adicionales y estimación usando modelos lineales mixtos. Se presenta una revisión exhaustiva de estos dos problemas y se puede observar que la vinculación de estos no ha sido trabajado.
References
Bender, R., Augustin, T. & Blettner, M. (2003), ‘Generating survival time to simulate cox proportional hazards models.’.
Breslow, N. (1974), ‘Covariance Analysis of Survival Data under the Proportional Hazards Model.’, International Statistical Review 43, 43–54.
Cox, D. R. (1972), ‘Regression Models and Life Tables (with Discussion)’, Journal of the Royal Statistical Society B 34, 187–220.
Efron, B. (1977), ‘The Efficiency of Coxs Likelihood Function for Censored Data.’, Journal of the American Statistical Association 72, 557–565.
Efron, B. (1982), The Jackknife, the Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics.
Kalbfleisch, J. & Prentice, R. (1980), The statistical analysis of failure time data, New York, Wiley.
Meeker, W. & Escobar., L. (1998), Statistical Models and Methods for Reliability Data, New York, John Wiley and Sons.
R Development Core Team (2008), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org
Ramírez, J., I. Osuna, J. R. & Guerrero, S. (2016), ‘Remuestreo Bootstrap y Jackknife en confiabilidad: Caso Exponencial y Weibull’, Revista Facultad de Ingeniería 25(41), 55–62.
Ramírez, J. & Martínez, G. (2015), ‘Comparación de Estimadores no paramétricos frente a los paramétricos para la función de Confiabilidad’, Revista Ingeniería Investigación y Desarrollo 15(2), 15–24.
Ramírez, J., Martínez, G. & Guerrero, S. (2015), ‘Intervalos de confianza para valores propios en el análisis de correspondencias a partir de una muestra probabilística’, Revista Comunicaciones en Estadística 8(2), 225–243.
How to Cite
License
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.