##plugins.themes.bootstrap3.article.main##

Ronne Tamayo Medina Heivar Yesid Rodríguez Pinzón

Resumen

En economía, una buena parte de los procesos observados a través del tiempo se plantean como el resultado de efectos de variables latentes, es decir, procesos no observables de forma directa. Este es el caso de la volatilidad de la rentabilidad en el mercado financiero, la cual ha sido modelada desde comienzos de los años 80 empleando modelos de varianza condicional ARCH y GARCH y, más recientemente modelos de volatilidad estocástica SV, los cuales presentan un menor número de parámetros que los modelos GARCH y permiten estudiar la naturaleza no-lineal de la volatilidad.Debido a que en el modelo SV no se conoce de forma exácta la función de verosimilitud, se emplea el método de estimación máximo cuasi-verosímil propuesto por gh94, el cual utiliza la representación en forma de modelo de estados State-Space. La representacion del modelo SV mediante la forma de estados se evalua a traves de filtros adaptativos, como es el caso de los filtros Kalman, lo cual implica un mayor costo computacional. A partir de lo anterior, no necesariamente se llega a la solución óptima del problema.

##plugins.themes.bootstrap3.article.details##

Palabras Clave

Filtro Kalman, modelos de estado-espacio, modelos de volatilidad estocástica

Referencias
Aydemir, A. (1998), ‘Forecast performance of threshold autoregressive models a monte carlo study’, UWO. Department of Economics Working Papers.
Black, F. & Scholes, M. (1973), ‘The pricing of option and corporate liabilities’, Journal of Political Economy.
Bollerslev, T. (1986), ‘Generalized autoregressive conditional heteroscedasticity’, Journal of Econometrics.
Breidt, F., Crato, N. & de Lima, P. (1998), ‘The detection and estimation of long memory in stochastic volatility’, Journal of Econometrics.
Campbell, J. & Hentschel, L. (1992), ‘An asymmetric model of changing volatility in stocks returns’, Journal of Financial Economics .
Davis, M. & Vinter (1985), Stochastic Modelling and Control, Chapman and Hall.
Durbin, J. & Harvey, A. (1985), The effects of seat belt legislation on road causalities in great Britain: Report on assessment of the statistical evidence, Technical report, Compulsory seat belt wearing report by the Department of Transport.
Engle, R. (1982), ‘Autoregressive conditional heteroskedasticity with estimates of united kingdom inflation’, Econometrica .
Fama, E. (1965), ‘The behavior of stocks market prices’, Journal of Business. Figlewski, S. (1997), ‘Forecasting volatility’, Financial Markets, Institutions and Instruments.
Garman, M. B. & Klass, M. (1980), ‘On the estimation of security price volatilities from historical data’, Journal of Business.
Geert, B. & Campbell, H. (1994), ‘Time-varying world market integration’, NEBER Working Papers (4843).
Hannan, E. & Deistler, M. (1988), La Teoría Estadística de Sistemas Lineales, Wiley.
Harvey, A. (1994), Forecasting structural time series models and the kalman filter, Cambridge University Press.
Hsieh, D. (1995), ‘Nonlinear dynamics in financial markets: Evidence and implica- tions’, Financial Analysts Journal .
Li, C. & Li, W. (1996), ‘On a double threshold autoregessive conditional hetero- kedasticity time series model’, Journal Applied Econometrics.
Mandelbrot, B. (1963), ‘The variation of certain speculative price’, Journal of Business.
Markowitz, H. (1952), ‘Portafolio selection’, The Journal of Finance.
Merton, R. (1974), ‘On the pricing of corporate debt: The risk structure of interest rates’, Journal of Finance.
Rabemananjara, R. & Zakoian, J. M. (1993), ‘Threshold arch models and asymmetries in volatility’, Journal of Applied Econometrics.
Sharpe, W. (1964), ‘Capital asset prices - a theory of market equilibrium under conditions of risk’, Journal Of Finance .
Shephard, N. (1986), Time Series Models in Econometrics, Chapman and Hall. Steyn, I. (1996), ‘State space models in econometrics: a field guide’, Vrije Universiteit .
Taylor, S. (1986), Modelling Financial time series, John Wiley.
Tobin, J. (1958), ‘Liquidity preference as behavior towards risk’, Review of Economic Studies .
Tong, H. (1978), On a Threshold Model.
Cómo citar
Tamayo Medina, R., & Rodríguez Pinzón, H. Y. (2010). Una revisión de los modelos de volatilidad estocástica. Comunicaciones En Estadística, 3(1), 79-98. https://doi.org/10.15332/s2027-3355.2010.0001.05
Sección
Artículos