Una prueba de independencia completa basada en la FDR
A test for complete Independence based on FDR
Resumen (es)
El an\'alisis e interpretaci\'on de datos multivariados se facilita enormemente si las variables son independientes. En la pr\'actica, este supuesto se verifica a trav\'es de una prueba de independencia completa. Proponemos una nueva prueba de independencia completa basada en la Tasa de Falsos Descubrimientos (FDR, en ingl\'es) y reportamos los resultados de un estudio de simulaci\'on en el que comparan los niveles de significancia real de esta propuesta y otras pruebas com\'unmente utilizadas. Encontramos que el nivel de significancia real s\'olo se mantienen por debajo del te\'orico para la prueba basada en la FDR, y que este es independiente del tama\~no de muestra y el n\'umero de variables. Finalmente, ilustramos nuestra propuesta con dos ejemplos.Resumen (en)
Analysis and interpretation of multivariate data is largely facilitated if the variables are independent. In the practice, this supposition is verified through a test for complete independence. We propose a new test for complete independence based on the false discovery rate (FDR), and report the results of a simulation study which compares the real significance levels of this proposal and other tests generally used. We found that the real significance level only remains under the theoretical one for the test based on FDR, and that this is regardless the size of the sample and number of variables. Finally, we illustrate our proposal with two examples.
Referencias
Anderson, E. (1935), ‘The irises of the Gaspe peninsula’, Bulletin of the American Iris Society 59, 2–5.
Bartlett, M. (1954), ‘A note on multiplying factors for various χ 2 approximations’, Journal of the Royal Statistical Society, Ser. B (Methodological) 16, 296–298.
Benjamini, Y. & Hochberg, Y. (1995), ‘Controlling the false discovery rate: A practical and powerful approach to multiple testing’, Journal of the Royal Statistial Society, Series B (Methodological) 57(1), 389–400.
Box, G. (1949), ‘A general distribution theory for a class of likelihood criteria’, Biometrika 36, 317–346.
Correa, J. C. (2006), Control de la proporción de hipótesis rechazadas equivocadamente, Curso de Estad´ıstica Genética, Universidad de Antioquia.
Correa, J. C. (2011), ‘Diagnósticos de regresión usando la FDR (Tasa de Descubrimientos Falsos)’, Comunicaciones en Estad´ıstica 3(2), 109–118.
Dudoit, S., Yang, Y.-H., Callow, M. J. & Speed, T. P. (2002), ‘Statistical methods for identifying differentially expressed genes in replicated cDNA experiments’, Statistica Sinica 12, 111–139.
Morrison, D. F. (1976), Multivariate statistical methods, 2 edn, New York: McGraw-Hill.
Morrison, D. F. (2005), Multivariate statistical methods, 4 edn, Belmont, CA: Brooks/Cole.
Mudholkar, G. S., Trivedi, M. C. & Lin, T. (1982), ‘An approximation to the distribution of the likelihood ratio statistic for testing complete independence’, Technometrics 24(2), 139–143.
Nguyen, D. V., Bulak Apart, A., Wang, N. & Carrol, R. J. (2002), ‘DNA microarray experiments: biological and technological aspects’, Biometrics 58, 701–717.
R Core Team (2013), R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.*http://www.R-project.org/
Schaffer, J. P. (1995), ‘Multiple hypothesis testing: A review’, Annu. Rev. Psychol. 46, 561–84.
Schott, J. R. (2005), ‘Testing for complete independence in high dimensions’, Biometrika 92(4), 951–956.
Wilks, S. S. (1935), ‘On the independence of k sets of normally distributed statistical variables’, Econometrika 3, 309–26.
Cómo citar
Licencia
Los autores mantienen los derechos sobre los artículos y por tanto son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes:
Reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).
Comunicaciones en Estadística está bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)