Gobierno de datos, un potenciador de los sistemas de gestión de calidad
Data government, a potential of quality management system
Administração de dados, um intensificador de sistemas de gestão de qualidade
Abstract (en)
Data management is an effective tool for the development of the components of a management system in organizations. In addition, it allows the disposition of the productive forces in search of generating a greater value and the distribution of the benefits that brings the globalization to overcome the multiple inequalities in fulfillment of the social object of Positive Insurance Company S.A., like unique insurer state of the
market of people. Accordingly, the research aimed to determine the effects of the implementation of a Data Governance (DG) program integrated into the Quality Management System in Positiva. Qualitative inquiries were made by the users’ perception of the data about the implementation of the DG and the impacts generated after its implementation in 2012 were identified. As a result, DG’s contributions to the general requirements components, the management and measurement, analysis and improvement of ISO 9001. It was concluded that the implementation of the GD was good according to the users of the data and important effects were identified that contribute to decrease the accidents and achieve the institutional goal.
Abstract (es)
La gestión de datos es una herramienta eficaz para el desarrollo de los componentes de un sistema de gestión en las organizaciones. Además, permite la disposición de las fuerzas productivas en busca de generar un mayor valor y la distribución de los beneficios que trae la globalización para superar las múltiples desigualdades en cumplimiento del objeto social de Positiva Compañía de Seguros S. A., como única aseguradora estatal del mercado de personas. Atendiendo a ello, la investigación tuvo como objetivo determinar los efectos de la implementación de un programa de Gobierno de Datos (GD) integrado al Sistema de Gestión de la Calidad en Positiva. Se indagó de forma cualitativa por la percepción de los usuarios de los datos acerca de la implementación del GD y se identificaron los impactos generados tras su implementación en el 2012. Como resultado se identificaron los aportes del GD a los componentes de requisitos generales, responsabilidad de la dirección y medición, análisis y mejora de la norma ISO 9001. Se concluyó que la implementación del GD fue buena según los usuarios de los datos y se identificaron efectos importantes que aportan a disminuir la siniestralidad y lograr la meta institucional.
Abstract (pt)
References
Al-Ruithe, M., Benkhelifa, E., y Hameed, K. (2016). A conceptual framework for designing data governance for cloud computing. Procedia Computer Science, 94 (Supplement C),160-167.doi://
doi.org.bdatos.usantotomas.edu.co/10.1016/j.procs.2016.08.025
Bibri, S. E., y Krogstie, J. (2017). ICT of the new wave of computing for sustainable urban forms: Their big data and context-aware augmented typologies and design concepts, Sustainable Cities and Society, 32(Supplement C):449-474. doi://doi.org.bdatos.usantotomas.edu.co/10.1016/j.scs.2017.04.012
Buchmann, M. (2017). The need for competition between decentralized governance approaches for data exchange in smart electricity grids—Fiscal federalism vs. polycentric governance. Journal of Economic Behavior & Organization, 139, 106-117. doi://doi.org.bdatos.usantotomas.edu.co/10.1016/j.jebo.2017.05.011
Hernández Sampieri, R., Fernández Collado, C., y Baptista Lucio, P. (2014). Metodología de la investigación. México D. F., México: McGraw-Hill.
ICONTEC. (2008). Norma técnica colombiana NTC ISO 9000. Sistema de gestión de la calidad. Fundamentos y vocabulario. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá D. C., Colombia: ICONTEC.
Mansfield-Devine, S. (2017). Data governance: Going beyond compliance. Computer Fraud & Security, (6):12-15. doi://doi.org.bdatos.usantotomas.edu.co/10.1016/S1361-3723(17)30052-0
Seele, P. (2017). Predictive sustainability control: A review assessing the potential to transfer big data driven ‘predictive policing’ to corporate sustainability management. Journal of Cleaner Production, 153 (Supplement C), 673-686. doi://doi.org.bdatos.usantotomas.edu.co/10.1016/j.jclepro.2016.10.175
Thomas, G. (2009). How to Use the DGI Data Governance Framework to Configure Your Program. Data Governance Institute, 2009. Recuperado de http://www.datagovernance.com/wp-content/uploads/2014/11/wp_how_to_use_the_dgi_data_
governance_framework.pdf
Thomas, G. (s. f.). The DGI Data Governance Framework. The Data Governance Institute. Recuperado de: http://www.datagovernance.com/wp-content/uploads/2014/11/dgi_framework.pdf.
How to Cite
License
The authors keep the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
To recognize the credits of the work in the way specified by the author or licensor (but not in a way that suggests that they have their support or that they support the use of their work).
SIGNOS is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The Universidad Santo Tomás preserves the proprietary rights (copyright) of the published works, and favors and allows the reuse of the same under the aforementioned license.