Una prueba de rachas para la alternativa "estocásticamente mayor que" en muestras de la distribución lognormal
A run test for the alternative “stochastically greater than ”in samples of the lognormal distribution
Archivos adicionales
Resumen (es)
Se propone una prueba de rachas para la hipótesis de simetría alrededor de una mediana desconocida con alternativa de "estocasticamente mayor que" basada en una prueba de rachas recortada para la hipótesis de simetría alrededor de una mediana conocida con alternativa de dos colas propuesta en Babativa & Corzo
(2010). Por medio de un estudio de simulación se muestra que para muestras de la distribución lognormal la prueba propuesta mantiene el tamaño bajo la hipótesis de simetría y que su potencia empírica supera la de las pruebas propuestas en Cabilio & Masaro (1996), Mira (1999) y Miao et al. (2006).
Resumen (en)
We propose a runs test for the hypothesis of symmetry around an unknown median with alternative “stochastically larger than”based on a trimmed runs test for the hypothesis of symmetry around an unknown median with two-tailed alternative proposed in Babativa & Corzo (2010). By a simulation study we show that for samples coming from the Lognormal Distribution, the proposed test maintains the prefixed size and that its empirical power is larger than of the other compared tests proposed in Cabilio & Masaro (1996), Mira (1999) and Miao et al. (2006).
Referencias
Babativa, G. & Corzo, J. (2010), 'Propuesta de una prueba de rachas recortada para la hipotesis de simetría', Revista Colombiana de Estadística 33(2), 251-271.
Babativa, J. (2008), Propuesta de una prueba de rachas recortada para hipótesis de simetría, Tesis de Maestría, Universidad Nacional de Colombia, Facultad de Ciencias. Departamento de Estadística, Bogotá.
Cabilio, P. & Masaro, J. (1996), 'A simple test of symmetry about an unknown median', The Canadian Journal of Statistics 24(3), 349-361.
Chatterjee, S. & Sen, P. (1971), 'On Kolmogorov-Smirnov-Type Tests for Symmetry', Annals of the Institute of Statistical Mathematics 25(1), 287-299.
Corzo, J. (1989), Verallgemeinerte Runtests for Lage- und Skalenalternativen, Tesis de doctorado, Universitat Dortmund, Fachbereich Statistik, Universitat Dortmund.
Corzo, J. & Babativa, G. (2013), 'A trimmed runs test for symmetry', Journal of Statistics Computation and Simulation 83(5), 984-991.
McWilliams, P. (1990), 'A Distribution-Free Test for Symmetry Based on a Runs Statistic', Journal of the American Statistical Association 85(412), 1130-1133.
Miao, W., Gel, Y. & Gastwirth, J. (2006), 'A new test of symmetry about an unknown median', Random Walk, Sequential Analysis and Related Topics - A Festschrift in Honor of Yuan-Shih Chow. Eds.: Agnes Hsiung, Cun-Hui Zhang, and Zhiliang Ying, World Scientic Publishe pp. 1-19.
Mira, A. (1999), 'Distribution-free test for symmetry based on Bonferroni's measure', Journal of Applied Statistics 26(8), 959-972.
Modarres, R. & Gastwirth (1996), 'A modied runs tes for symmetry', Statistics and probability 25(5), 575-585.
Modarres, R. & Gastwirth, J. (1998), 'Hybrid test for the hypothesis of symmetry', Journal of Applied Statistics 25(6), 777-783.
Welch, B. L. (1938), 'The signicance of the dierence between two means when the population variances are unequal', Biometrika 29, 350-362.
Cómo citar
Licencia
Los autores mantienen los derechos sobre los artículos y por tanto son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes:
Reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).
Comunicaciones en Estadística está bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)