Modalidad didáctica histórico-comparativa para la regresión
Historical-Evolutionary teaching mode for regression
Abstract (en)
The teaching and learning process is undergoing a change in its regulatory paradigm, making real and operational pedagogical innovation that marks the transition from a model focused on teaching to a model focused on student learning. This modification invites into question what we intend that students learn, what are the modalities and most appropriate for the student to acquire these learnings and what criteria and methodologies are procedures will check if the student has finally acquired. This article brings to present a historical-evolutive teaching method for alternative methods based on regression.
Abstract (es)
References
Bates, D. M. &Watts, D. G. (1988). Nonlinear regression: iteractive estimation and linear approximations. Wiley Online Library.
Birkes, D. & Dodge, Y. (2011). Alternative methods of regression, volume 190. John Wiley & Sons.
Bloomeld, P. & Steiger, W. (1980). Least absolute deviations
curve-tting. SIAM Journal on sientic and statistical computing, 1(2), 290301.
Charnes, A., Cooper, W. W. & Ferguson, R. O. (1955). Optimal estimation of executive compensation by linear programming. Management science, 1(2), 138151.
De Miguel-Díaz, M. (2005). Modalidades de enseñanza centradas en el desarrollo de competencias. Orientaciones para promover el cambio metodológico en el Espacio Europeo de Educación Superior. Oviedo: Universidad de Oviedo, pages 10914.
Karst, O. J. (1958). Linear curve tting using least deviations. Journal of the American Statistical Asso ciation, 53(281), 118132.
Lehmann, E. L. & Casella, G. (1998). Theory of point estimation, volume 31. Springer Science & Business Media.
Madariaga, D. F. C., Rodríguez, J. L. G., Lozano, M. R., Vallejo, E. C. & de Administración, E. (2013). Inferencia estadística módulo de regresión lineal simple.
Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. (1996). Applied linear statistical models, volume 4. Irwin Chicago.
Stiefel, E. (1960). Note on jordan elimination, linear programming and tchebyche ap-proximation. Numeris che Mathematik, 2(1), 117.
Stigler, S. M. (1984). Studies in the history of probability and statistis xl boscovich, simpson and a 1760 manuscript note on tting a linear relation. Biometrika, 71(3), 615620.
Wagner, H. M. (1959). Linear programming techniques for regression analysis. Journal of the American Statistical Asso ciation, 54(285), 206212.
Weisberg, S. (2005). Applied linear regression, volume 528. John Wiley & Sons. 12
How to Cite
License
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)

Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.




