Alternativas de clasificación en poblaciones multivariadas
Classification alternatives in multivariate populations
Abstract (en)
Given the importance, in the last years, of the classification topic and the study yourself have been developed, in this article we compare the efficiency of the classifiers Support Vector Machines (SVM), Fuzzy Classifier (FC), Logistic Regression (LR) and Lineal Discriminate Analysis (LDA), using Multivariate Normal Distribution (MND), Multivariate Skew Normal Distribution (MSND) and Multivariate t Distribution (MTD) for different variables number by means of a simulation study. The best classifier is selected based on your efficiency in terms of the False Discovery Rate (TCE).
Abstract (es)
Dada la importancia del tema de clasificación y los estudios que consigo se han desarrollado, en este artículo se compara, vía simulación, la eficiencia de los clasificadores Máquinas de Soporte Vectorial (SVM), Clasificador Fuzzy (FC), Regresión Logística (LR) y Análisis Discriminante Lineal (LDA), en datos provenientes de las distribuciones Normal Multivariada (MND), Skew Normal Multivariada (MSND) y t Multivariada (MTD), para diferentes números de variables. El mejor clasificador se selecciona de acuerdo con su eficiencia en términos de la tasa de clasificación errónea (TCE).
References
Anderson, T. W., Anderson, T. W., Anderson, T. W. & Anderson, T. W. (1958), An introduction to multivariate statistical analysis, Vol. 2, Wiley New York.
Azzalini, A. & Capitanio, A. (1999), Statistical applications of the multivariate skew normal distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(3), 579–602.
Azzalini, A. & Dalla Va-lle, A. (1996), The multivariate skew-normal distribution, Biometrika 83(4), 715–726.
Azzalini, A. & Dalla Valle, A. (1996), The multivariate skew-normal distribution, Biometrika 83(4), 715–726.
Barajas, F. H. & Morales, J. C. C. (2009), Comparación entre tres técnicas de clasificación, Revista Colombiana de Estadística 32, 247–265.
Cortes, C. & Vapnik, V. (1995), Support-vector networks, Machine learning 20(3), 273–297.
Fisher, R. A. (1936), The use of multiple measurements in taxonomic problems, Annals of eugenics 7(2), 179–188.
Hoppner, F., Klawonn, F., Kruse, R. & Runkler, T. (1999), Fuzzy cluster analysis: methods for classification, data analysis and image recognition, J. Wiley New York.
Hosmer, D. W. & Lemeshow, S. (2000), Applied Logistic Regression (Wiley Series in Probability and Statistics), Wiley-Interscience Publication.
Johnson, R. A. & Wichern, D. W. (2002), Applied multivariate statistical analysis, Vol. 5, Prentice hall Upper Saddle River, NJ.
Kotz, S. & Nadarajah, S. (2004), Multivariate T-Distributions and Their Applica- tions, Cambridge University Press.
Salazar, D. A., Vélez, J. I. & Salazar, J. C. (2012), Comparison between svm and logistic regression: Which one is better to discriminate’, Revista Colombiana de Estad ́ıstica 35(SPE2), 223–237.
How to Cite
License
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.