Propuesta para aumentar los puntos experimentales en diseños D-óptimos bayesianos
Proposal to increase experimental points in Bayesian D-optimal design
Abstract (en)
One of the most frequent used criteria to obtain optimal designs is D-optimality designs, which provides experimental points where the volume of confidence ellipsoid associated to the vector of parameters in the proposed model is minimized. Unlike the classical D-optimal design, the Bayesian D-optimal design does not necessarily have as many support points as the model parameters. This article considers the case where D-optimal design averaged by a specific a priori has as many support points as the number of parameters of the model. This situation may not be as favorable when the model is not specified with complete certainty, since it would not be possible to conduct tests due to lack of fitness for the model. This article proposes a methodology that allows increasing the number of support points of the design in order that, with the resulting design, goodness of fitness test can be applied. Finally, the methodology is exemplified with an exponential model.
Abstract (es)
References
Argumedo-Galvan, S. & López, V. (2011), ‘Estrategia de adición de puntos de soporte para un diseño D-óptimo’, VIII Coloquio Internacional de Estadística Métodos Estadísticos Aplicados a Finanzas y Gestión de Riesgo pp. 1–17.
Atkinson, A., Donev, A. & R., T. (2007), Optimum experimental designs with SAS, Oxford University Press, New York.
Cardona, J., López, V. I. & Correa, J. C. (2012), ‘Diseños óptimos bayesianos para estimación de parámetros en farmacocinética’, Comunicaciones en Estadística 5(1), 97–112.
Chaloner, K. & Larntz (1989), ‘Optimal bayesian design applied to logistic regression experiments’, Journal of Statistical 1, 191–208.
Fedorov, V. & Hackl, P. (1997), ‘Model oriented design of experiments.’, Lecture Notes in Statistics .
Gaffke, N. (1987), ‘On D-optimality of exact linear regression designs with minimum support’, Journal of Statistical Planning and Inference 15, 189–204.
Inderjit, J. C. & Olofsdotter, M. (2002), ‘Joint action of phenolic acid mixtures and its significance in allelopathy research’, Physiologia Plantarum 114, 422–428.
Kiefer, J. (1959), ‘Optimum experimental designs’, Journal of the Royal Statistical Society 21, 272–319.
Kiefer, J. & Wolfowitz, J. (1959), ‘Optimum designs in regression problems’, Annals of Mathematical Statistics 30(2), 271–294.
López, V. I. (2008), Diseños óptimos para discriminación y estimación en modelos no lineales, PhD thesis, Centro de Investigación en Matemáticas, A.C, Guanajuato, México.
López, V. I. & Ramos, R. (2007), ‘Una introducción a los diseños óptimos’, Revista Colombiana de Estadística 30(1), 37–51.
O’Brien, T. (1992), ‘A note on quadratic designs for nonlinear regression models’, Biometrika 79, 847–859.
O’Brien, T. (1995), ‘Optimal design and lack of fit in nonlinear regression models’, Statistical modelling, Lecture Notes in Statistics 104, 201–206.
How to Cite
License
The authors maintain the rights to the articles and therefore they are free to share, copy, distribute, execute and publicly communicate the work under the following conditions:
Recognize the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that, you have their support or that they support your use of their work).
Comunicaciones en Estadística is licensed under Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Universidad Santo Tomás preserves the patrimonial rights (copyright) of the published works, and favors and allows the reuse of them under the aforementioned license.