Publicado
2011-12-31

¿Se necesita la prueba t de Student para dos muestras independientes asumiendo varianzas iguales?

Is it actually needed the t-student test for two independent samples when assuming the same variances?

DOI: https://doi.org/10.15332/s2027-3355.2011.0002.05
Jorge Eduardo Ortiz
Edna Carolina Moreno

Resumen (es)

En este trabajo se hace un examen del comportamiento de la proporción de rechazos equivocados de la hipótesis nula (error tipo I) en condiciones plenas de aplicabilidad de la distribución t de Student, es decir, con variables independientes cuya distribución es normal tanto bajo el supuesto de homogeneidad de varianzas como en las condiciones de heterocedasticidad.
Palabras clave (es): Estadística t, prueba t, monotonía, estabilidad, prueba de Welch-Satterwhaite

Resumen (en)

In this paper we review the behavior of the type I error rate of Student’s t-test and Welch-Sattetthwaite test for comparing two means with independent samples from normal populations under the assumption of homogeneity of variances and under conditions of heteroscedasticity. The results, obtained by the Monte Carlo method show the Welch-Satterthwaite well behaved in all cases.

Referencias

Brown, M. & Forsythe (1974), ‘Robust Test for the Equality of Variances’, Journal of the American Statistical Association 69(346), 364–367.

Canavos, G. (1988), Probabilidad y estadística: aplicaciones y métodos, Mc-Graw Hill, México.

Conover, W., Johnson, M. E. & Johnson, M. (1981), ‘A Comparative Study of Tests for Homogeneity of Variances, With Applications to the Outer Continental Shelf Bidding Data’, Technometrics 23, 351–361.

Dodge, Y. (1985), Analysis of Experiments with Missing Data, John Wiley & Sons, New York.

Kim, S. H. & Cohen, A. S. (1995), ‘On the Behrens-Fisher Problem: A Review’.

Marques de Sa´, J. (2007), Applied Statistics using SPSS, Statistical, Matlab and R,

Springer Verlag, Berlin.

Milliken, G. & Johnson, D. (1984), Analysis of Messy Data, Vol. I of of Designed Experiments, Van Nostrand Reinhold, New York.

Montilla, J., M. & Kromrey, J. (2010), ‘Robustez de las pruebas T en comparación de medias, ante violación de supuestos de normalidad y homocedasticidad’, Revista Ciencia e Ingeniería 31(2), 101–108.

Newbold, P., Carlson, W. & Thorne, B. (2008), Estadística para administración y economía, Pearson Educación S.A., Madrid.

Park, H. M. (2009), ‘Comparing Group Means: T-tests and One-way ANOVA Using Stata, SAS, R, and SPSS’. *http://www.indiana.edu/˜statmath/stat/all/ttest

R Development Core Team (2007), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org

Satterthwaite, F. E. (1946), ‘An Approximate Distribution of Estimates of Variance Components’, Biometrics Bulletin 2(6), 110–114.

Sawilowsky, S. (2002), ‘Fermat, Schubert, Einstein, and Behrens-Fisher: The Probable Difference Between Two Means When σ2 ƒ= σ2’, Journal of Modern

Applied Statistical Methods 1(2).

Searle, S. R., Casella, G. & McCulloch, C. (1992), Variance Components, John Wiley & Sons, New York.

Welch, B. L. (1938), ‘The significance of the difference between two means when the population variances are unequal’, Biometrika 28(3/4), 350–362.

Welch, B. L. (1947), ‘The generalization of Student’s problem when several different population variances are involved’, Biometrika 34(1/2), 28–35.

Winer, B. J. (1971), Statistical Principles in Experimental Design, Mc-Graw Hill, New York.

Zimmerman, D. W. & Zumbo, B. D. (2009), ‘Hazards in choosing between pooled and separate-variances t tests’, Psicoloógica 30, 371–390.

Dimensions

PlumX

Visitas

1646

Descargas

Los datos de descarga aún no están disponibles.

Cómo citar

Ortiz, J. E., & Moreno, E. C. (2011). ¿Se necesita la prueba t de Student para dos muestras independientes asumiendo varianzas iguales?. Comunicaciones En Estadística, 4(2), 139-157. https://doi.org/10.15332/s2027-3355.2011.0002.05