##plugins.themes.bootstrap3.article.main##

Robert Romero Giovanny Babativa

Resumen

Cada día toma mayor importancia para las empresas contar con bases de datos de clientes leales, ya que el continuo seguimiento y la ampliación de negocios con ellos otorga mayor rentabilidad que la consecución de nuevos clientes. Son varias las metodologías que se han utilizado con la finalidad de medir la satisfacción y lealtad, la mayoría de ellas están basadas en la Psicología Conductista propia del Positivismo y se apalanca en la descripción de conductas manifiestas medidas directamente y que tienen como principal objetivo establecer la importancia directa que cada driver del servicio tiene sobre la lealtad, tal es el caso de las metodologías basadas en Modelos de Regresión. En este artículo ejemplifico la aplicación de un Modelo de Lealtad que busca a través de un análisis de Ecuaciones Estructurales con variables latentes, determinar el tamaño del efecto que tienen sobre la lealtad fenómenos como la satisfacción con el servicio, la intención de recompra y la recomendación.  

##plugins.themes.bootstrap3.article.details##

Palabras Clave

Análisis factorial exploratorio, DWLS, efecto directo, efecto indirecto, modelo de medida, variable latente.

Referencias
Batista, J. & Coenders, G. (2000), Modelos de Ecuaciones Estructurales, 2 edn, Editorial La Muralla, Madrid, Spain.

Bentler, P. M. & Bonett, D. G. (1980), ‘Significance test and goodness of fit in them analysis of covariance structures’, Psychological Bulletin 88(3), 588–606.

Coenders, G., Satorra, A. & Saris, W. E. (1979), ‘Alternative approaches to structural modeling of ordinal data: A Monte Carlo study’, Structural Equation Modeling: A Multidisciplinary Journal 4(4), 261–282.

Field, A. (2000), Discovering Statistics using SPSS for Windows, 1 edn, Sage publications, Thousand Oaks, CA.

Gelin, M., Beasley, T. & Zumbo, B. (2003), ‘What is the impact on scale reliability and exploratory factor analysis of a Pearson correlation matrix when some respondents are not able to follow the rating scale?’. *http://faculty.educ.ubc.ca/zumbo/aera/papers/GelinBeasleyZumbo7Apr.pdf

Hoyle, R. H. (2012), Handbook of Structural Equation Modeling, 1 edn, The Guilford Press, New York.

Loehlin, J. C. (2004), Latent Variable Models, 4 edn, Laurence Erlbaum Associates Publishers, New Jersey.

Long, J. S. (1983), ‘Covariance structure models: an introduction to LISREL’, Quantitative Applications in the Social Sciences. SAGE Publications, Inc .

Olsson, U. H. (1979), ‘Maximum likelihood estimation of the polychoric correlation coefficient’, Psychometrika 44(4), 443–460.

Rietveld, T. & Van Hout, R. (1993), Statistical Techniques for the Study of Language and Language Behaviour, 1 edn, Mouton de Gruyter, Berlin.

Romero, G. R. (2015), ‘Modelo de Lealtad a partir de un an´alisis de Ecuaciones Estructurales’, Tesis de Pregrado. Universidad Santo Tom´as .

Saurina, C. (1997), ‘Evaluación de un modelo de medida de la calidad en el sector servicios. Las entidades financieras de la comarca de Girona’, Annual meeting of the American Educational Research Association (AERA) 39, 219–248.

Streiner, D. (2003), ‘Starting at the beginning: an introduction to coefficient alpha and internal consistency’, Journal of personality assessment 8(1), 99–103.
Cómo citar
Romero, R., & Babativa, G. (2016). Modelo de Lealtad a partir de un Análisis de Ecuaciones Estructurales. Comunicaciones En Estadística, 9(2), 165-197 (157. https://doi.org/10.15332/s2027-3355.2016.0002.01
Sección
Artículos