Modelo de gestión de carteras de Markowitz usando algorietmos genéticos
Markowitz portfolio management model using genetic algorithms
Abstract (en)
In 1952, with his article, Harry Markowitz, he greatly simplified the problem to choice the correct investing in a stock market. In this work, the reader is introduced in the Markowitz’s proposal and it is proposed a genetic algorithm for computing a portfolio that reduce risk and maximize return between two assets. In the last part, the genetic algorithm is applied in two real case studies with monthly records obtained between 2009 and 2013.Abstract (es)
References
Bedoya Villegas, J. A. (2011). Aplicación de la teoría Markowitz. Medellín: Universidad Nacional de Colombia.
Bolsa de Valores de Colombia. (Último acceso: junio 2013) En línea. Recuperado de: http:// www.bvc.com.co.
Davis, L. (1991). Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.
Gordon, A. (2003). Fundamentals of Investments/ Fundamentos de Inversiones. New York: Pearson.
Grefenstette, J. J. (1990). A User’s Guide to GENESIS.
Hunter, A. (1995). Sugal Programming Manual.
Lasa, A. J. (2009). Construcción de una frontera eficiente de activos financieros en México. Denarius. 131-153 .
Levine, D. (1995). User’s Guide to the PGA Pack Parallel Genetic Algorithm Library.
Markowitz, H. M. (1959). The Theory and Practice of Investment Management: Asset Allocation, Valuation, Portfolio Construction, and Strategies. New Jersey: John Wiley & Sons.
Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs. Charlotte: Springer-Verlag..
Milone, D., Rufiner, H. L. y Acevedo, R. (2009). Introducción a las señales y los sistemas discretos. Concepción del Uruguay, Entre Ríos: EDUNER.
Pérez Serrada, A. (1996). Una introducción a la computación evolutiva.
Roldán Hernández, A. F. y Lugo Currea, N. A.. (2010). Predicción del Valor de la Acción de ETB en la Bolsa de Acciones de Colombia mediante sistemas difusos. Bogotá: Universidad Distrital Francisco José de Caldas.
Shaffer, J. D. (ed.) (1989). Proceedings of the Thrid International Conference on Genetic Algorithms. New York: Morgan Kaufmann Publishers.
Smith, R. E., et al. (1995). SGA-C: A C-Language Implementation of a Simple Genetic Algorithm. The Clearinghouse for Genetic Algoritms, Tuscaloosa: The University of Alabama.
Yahoo Finance. (Último acceso: junio 2013) Recuperado de: http://finance.yahoo.com/.
How to Cite
License
The authors sign a transfer of rights so that Universidad Santo Tomás can publish the articles under the conditions described below. The authors, readers and other users are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NonCommercial — You may not use the material for commercial purposes.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
CITAS is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Until 2019 the documents published in the magazine were under the Creative Commons Attribution-ShareAlike license (CC BY-SA), however, in order to guarantee the open and free distribution of the content published in the magazine, it was decided to change the type Commons Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0)