Predicción de la quiebra en las empresas. Una revisión de literatura
Resumen (es)
El entorno actual en el cual operan las empresas a nivel mundial implica una amplia gama de riesgos que pueden llegar a ocasionar que las compañías se declaren en bancarrota y desaparezcan. Resulta fundamental lograr prever de alguna manera este tipo circunstancias, razón por la cual múltiples autores han abordado este tema con diversos resultados. En este documento se realiza una revisión de la literatura existente sobre quiebra empresarial durante un periodo de 68 años (1950-2017), espacio de tiempo que supuso un análisis de 4,439 trabajos publicados mediante técnicas como el análisis de concurrencia de palabras clave y las redes de citas. Esta amplia revisión permitió la identificación de dos claras tendencias de investigación al respecto, la primera, relacionada con la estructura financiera de las empresas y la deuda y, la segunda, en torno a publicaciones relacionadas con técnicas, métodos y aspectos estadísticos de la predicción de la quiebra empresarial.
Resumen (en)
The current environment in which companies operate worldwide involves a wide range of risks that can lead companies to declare bankruptcy and disappear. It is essential to somehow be able to foresee these types of circumstances, which is why many authors have addressed this issue with different results. This paper reviews the existing literature on business bankruptcy over a 68-year period (1950-2017), a time period that involved an analysis of 4,439 papers published using techniques such as keyword concurrency analysis and citation networks. This extensive review allowed the identification of two clear research trends in this regard: the first, related to the financial structure of companies and debt; the second, around publications related to techniques, methods, and statistical aspects of business bankruptcy prediction.
Referencias
Alaka, H. A., Oyedele, L.O., Owolabi, H.A., Kumar, V., Ajayi, S.O., Akinade, O.O. y Bilal, M. (2017). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. DOI: https://doi.org/10.1016/j.eswa.2017.10.040
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23, (4), 589-609. DOI: https://doi.org/10.2307/2978933
Altman, E. I., & McGough, T. P. (1974). Evaluation of a company as a going concern. Journal of Accountancy, 138, (6), 50-57.
Altman, E. I. (1984). A further empirical investigation of the bankruptcy cost question. The Journal of Finance, 39, (4), 1067-1089. DOI: https://doi.org/10.1111/j.1540-6261.1984.tb03893.x
Altman, E. I., y Hotchkiss, E. (2010). Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt. John Wiley & Sons, United States.
Andrade, G., y Kaplan, S. N. (1998). How costly is financial (not economic) distress? Evidence from highly leveraged transactions that became distressed. The Journal of Finance, 53, (5), 1443-1493.
Ang, J. S., y Chua, J. H. (1981). Corporate bankruptcy and job losses among top level managers. Financial Management, 10, (5), 70-74. DOI: https://doi.org/10.2307/3664858
Balcaen, S., y Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38, (1), 63-93. DOI: 10.1016/j.bar.2005.09.001
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111. DOI: https://doi.org/10.2307/2490171
Bharath, S. T., y Shumway, T. (2008). Forecasting default with the Merton distance to default model. The Review of Financial Studies, 21, (3), 1339-1369. DOI: https://doi.org/10.1093/rfs/hhn044
Black, F., y Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, (3), 637-654.
Bunn, P., y Redwood, V. (2003). Company accounts-based modelling of business failures and the implications for financial stability. Bank of England Working Paper, 210. DOI: http://dx.doi.org/10.2139/ssrn.598276
Campbell, J. Y., Hilscher, J., y Szilagyi, J. (2008). In search of distress risk. The Journal of Finance, 63, (6), 2899-2939. DOI: https://doi.org/10.1111/j.1540-6261.2008.01416.x
Coats, P. K., y Fant, L. F. (1993). Recognizing financial distress patterns using a neural network tool. Financial Management, 22, (3), 142-155.
FitzPatrick, P. J. (1932). A comparison of the ratios of successful industrial enterprises with those of failed companies. Washington.
Crouhy, M., Galai, D., y Mark, R. (2000). A comparative analysis of current credit risk models. Journal of Banking and Finance, 24, (1-2), 59-117. DOI: https://doi.org/10.1016/S0378-4266(99)00053-9
Dichev, I. D. (1998). Is the risk of bankruptcy a systematic risk? The Journal of Finance, 53, (3), 1131-1147. https://doi.org/10.1111/0022-1082.00046
Ferguson, M. F., y Shockley, R. L. (2003). Equilibrium “anomalies”. The Journal of Finance, 58, (6), 2549-2580. DOI: https://doi.org/10.1046/j.1540-6261.2003.00615.x
García, A., & Mures, M. J. (2013). La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación. Revista de Métodos Cuantitativos Para La Economía y La Empresa, 15, 133–150.
Gilson, S. C., John, K., y Lang, L. H. (1990). Troubled debt restructurings: An empirical study of private reorganization of firms in default. Journal of Financial Economics, 27, (2), 315-353.
Gitman, L. J., Juchau, R., & Flanagan, J. (2015). Principles of managerial finance. 6th Edition, Pearson Higher Education AU.
Griffin, J. M., y Lemmon, M. L. (2002). Book-to‐market equity, distress risk, and stock returns. The Journal of Finance, 57, (5), 2317-2336. DOI: https://doi.org/10.1111/1540-6261.00497
Gruber, M. J., y Warner, J. B. (1977). Bankruptcy costs: Some evidence. The Journal of Finance, 32, (2), 337-347.
Hickman, W. B. (1958). Corporate bond quality and investor experience. NBER Books. Princeton University Press.
Hillegeist, S. A., Keating, E. K., Cram, D. P., y Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9, (1), 5-34. DOI: https://doi.org/10.1023/B:RAST.0000013627.90884.b7
Ibarra, A. (2002). Análisis de las dificultades financieras de las empresas en una economía emergente: Las bases de datos y las variables independientes en el sector hotelero de la bolsa mexicana de valores (Tesis Doctoral), Universitat Autònoma de Barcelona. Departament d'Economia de l'Empresa. Barcelona, España.
Jensen, M. C. (1986). Agency costs of free cash flow, corporate finance, and takeovers. The American Economic Review, 76, (2), 323-329.
Jensen, M. C., y Meckling, W. H. (1976). Theory of the firm: Managerial behavior, agency costs and ownership structure. Journal of Financial Economics, 3, (4), 305-360. DOI: https://doi.org/10.1016/0304-405X(76)90026-X
Lee, S. H., Yamakawa, Y., Peng, M. W., y Barney, J. B. (2011). How do bankruptcy laws affect entrepreneurship development around the world? Journal of Business Venturing, 26, (5), 505-520. DOI: 10.1016/j.jbusvent.2010.05.001
Leland, H. E. (1994). Corporate debt value, bond covenants, and optimal capital structure. The Journal of Finance, 49, (4), 1213-1252. DOI: https://doi.org/10.2307/2329184
Leland, H. E., y Toft, K. B. (1996). Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. The Journal of Finance, 51, (3), 987-1019. DOI: https://doi.org/10.1142/9789814759595_0003
Lev, B. (1978). Análisis de los Estados Financieros: un nuevo enfoque, Madrid: Ediciones ESIC.
Lizarraga, F. (1997): Utilidad de la información contable en el proceso de fracaso: Análisis del sector industrial de la mediana empresa española, Revista Española de Financiación y Contabilidad, 26, (92), 871-915.
Manzaneque, M., Benegas, R. & García D. (2010). Diferentes procesos de fracaso empresarial: Un análisis dinámico a través de la aplicación de técnicas estadísticas clúster, Revista Europea de Dirección y Economía de la Empresa, 19, (3), 67-88.
Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29, (2), 449-470.
Min, J. H., y Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28, (4), 603-614. DOI: doi:10.1016/j.eswa.2004.12.008
Modigliani, F., y Miller, M. H. (1958). The cost of capital, corporation finance and the theory of investment. The American Economic Review, 48, (3), 261-297.
Modigliani, F., y Miller, M. H. (1965). The cost of capital, corporation finance, and the theory of investment: reply. The American Economic Review, 55, (3), 524-527.
Myers, S. C. (1977). Determinants of corporate borrowing. Journal of Financial Economics, 5, (2), 147-175. DOI: https://doi.org/10.1016/0304-405X(77)90015-0
Myers, S. C., y Majluf, N. S. (1984). Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics, 13, (2), 187-221. DOI: https://doi.org/10.1016/0304-405X(84)90023-0
Odom, M. D., y Sharda, R. (1990, June). A neural network model for bankruptcy prediction. In Neural Networks, 1990., 1990 IJCNN International Joint Conference on (163-168). IEEE.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18, (1), 109-131. DOI: https://doi.org/10.2307/2490395
Ooghe, H., y De Prijcker, S. (2008). Failure processes and causes of company bankruptcy: a typology. Management Decision, 46, (2), 223-242. DOI: 10.1108/00251740810854131
Opler, T. C., y Titman, S. (1994). Financial distress and corporate performance. The Journal of Finance, 49 (3), 1015-1040. DOI: https://doi.org/10.1111/j.1540-6261.1994.tb00086.x
Radhakrishnan, S., Erbis, S., Isaacs, J. A., y Kamarthi, S. (2017). Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature. PloS One, 12, (9), e0185771. DOI: https://doi.org/10.1371/journal.pone.0172778
Ravi Kumar, P. R., y Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques–A review. European Journal of Operational Research, 180, (1), 1-28. DOI: https://doi.org/10.1016/j.ejor.2006.08.043
Romero, F. (2013). Alcances y limitaciones de los modelos de capacidad predictiva en el análisis del fracaso empresarial. Revista Ad-Minister, (23), 45–70.
Rose, P. S., y Giroux, G. A. (1984). Predicting corporate bankruptcy: an analytical and empirical evaluation. Review of Financial Economics, 19, (2), 1- 12.
Shleifer, A., y Vishny, R. W. (1992). Liquidation values and debt capacity: A market equilibrium approach. The Journal of Finance, 47, (4), 1343-1366. DOI: doi:10.1111/j.1540-6261.1992.tb04661.x
Shiers, A. F., y Williamson, D. P. (1987). Nonbusiness bankruptcies and the law: Some empirical results. Journal of Consumer Affairs, 21, (2), 277-292. DOI: https://doi.org/10.1111/j.1745-6606.1987.tb00203.x
Shin, K. S., y Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23, (3), 321-328. DOI: https://doi.org/10.1016/S0957-4174(02)00051-9
Shin, K. S., Lee, T. S., y Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28, (1), 127-135. DOI: 10.1016/j.eswa.2004.08.009
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74, (1), 101-124. DOI: https://doi.org/10.1086/209665
Simpson, P. B., y Anderson, P. S. (1957). Liabilities of business failures as a business indicator. The Review of Economics and Statistics, 39, (2), 193-199.
Situm, M. (2014). The age and the size of the firm as relevant predictors for bankruptcy. Journal of Applied Economics and Business, 2, (1), 5-30.
Smith, R. F. (1935). Changes in the Financial Structure of Unsuccessful Industrial Corporations, by Raymond F. Smith and Arthur H. Winakor, University of Illinois.
Smith, R. F., y Winakor, A. H. (1930). A test analysis of unsuccessful industrial companies. Bulletin, 31.
Tian, S., Yu, Y., y Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking and Finance, 52, 89-100. DOI: https://doi.org/10.2469/dig.v45.n8.13
Van Eck, N. J., y Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111, (2), 1053-1070. DOI: https://doi.org/10.1007/s11192-017-2300-7
Vassalou, M., y Xing, Y. (2004). Default risk in equity returns. The Journal of Finance, 59, (2), 831-868. DOI: https://doi.org/10.1111/j.1540-6261.2004.00650.x
Wilson, R. L., y Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11, (5), 545-557. DOI: https://doi.org/10.1016/0167-9236(94)90024-8
Zacharakis A.L., Meyer G., De Castro, J. (1999): Differing perceptions of new venture failure: A matched exploratory study of venture capitalists and entrepreneurs Journal of Small Business Management, 37, (3), 1-14.
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82. DOI: https://doi.org/10.2307/2490859
Cómo citar
Licencia
Los autores mantienen los derechos sobre los artículos y por tanto son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes:
Reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).
Activos está bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
La Universidad Santo Tomás conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia anteriormente mencionada.