Análisis de datos educativos con IA: transformación del aprendizaje y la gestión académica
Abstract (en)
La integración de la nteligencia rtificial (IA) en el ámbito educativo está transformando significativamente tanto los procesos de enseñanza-aprendizaje como la gestión académica. Mediante algoritmos de aprendizaje automático, la IA permite personalizar la instrucción, predecir el rendimiento académico y automatizar evaluaciones, lo cual genera rutas de aprendizaje adaptativas y más inclusivas. Herramientas como tutores inteligentes, sistemas de alerta temprana y plataformas de evaluación automatizada han demostrado mejorar la retención, motivación y eficiencia institucional. No obstante, esta revolución tecnológica también plantea importantes desafíos éticos y sociales, como los sesgos algorítmicos, la brecha digital y la privacidad de los datos estudiantiles. Este artículo subraya la necesidad de implementar marcos normativos claros y modelos de IA transparentes y explicables, que aseguren que el uso de estas tecnologías sea equitativo y respetuoso con los derechos de estudiantes y docentes. Además, resalta el papel fundamental del docente como mediador pedagógico en un entorno cada vez más automatizado. La evolución del sistema educativo dependerá de una formación docente sólida en competencias digitales y en pensamiento crítico sobre IA, así como del diseño de políticas públicas que promuevan un uso ético, inclusivo y basado en evidencia de estas tecnologías emergentes.
References
Baker, R. S. y Hawn, A. (2021). Algorithmic bias in education: From automated scoring to personalized learning systems. Educational Psychologist, 32(4), 1052–1092. https://doi.org/10.1007/s40593-021-00285-9
Baker, R. S. e Inventado, P. S. (2014). Educational data mining and learning analytics. En J. A. Larusson y B. White (eds.), Learning analytics: From research to practice (pp. 61-75). Springer. https://doi.org/10.1007/978-1-4614-3305-7_4
Bennett, C. J. y Raab, C. D. (2020). The governance of privacy: Policy instruments in global perspective. Routledge.
Falmagne, J. C., Albert, D., Doble, C. W., Eppstein, N. y Hu, X. (2013). Knowledge spaces: Applications in education. Springer Science & Business Media.
Holmes, W., Bialik, M. y Fadel, C. (2021). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.
Jordan, K., O'Neill, G., Nugent, T. y Mulvey, L. (2021). AI and the future of course design: Challenges and opportunities. International Journal of Educational Technology in Higher Education, 18(1), 1-20. https://educationaltechnologyjournal.springeropen.com/articles
/10.1186/s41239-021-00249-8
Koedinger, K. R., Anderson, J. R., Hadley, W. H. y Mark, M. A. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8(1), 30-43.
Long, P. D., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30–40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Open Ideas at Pearson. https://edu.google.com/pdfs/Intelligence-Unleashed-Publication.pdf
Luckin, R. (2018). Machine learning and human intelligence: The future of education for the 21st century. UCL Institute of Education Press.
Mayer-Schönberger, V. y Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt.
McMahan, H. B., Moore, E., Ramage, D. y Hampson, S. (2017). Communication-efficient learning of deep networks from decentralized data. En A. Singh y J. Zhu (eds.), Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (pp. 1273-1282). PMLR.
O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing Group.
Park, Y., y Doo, M. Y. (2024). Role of AI in blended learning: A systematic literature review. International Review of Research in Open and Distributed Learning, 25(1), 164–196. https://doi.org/10.19173/irrodl.v25i1.7566
Perelman, L. (2018). Mass-market writing assessment: An analysis of automated scoring algorithms in standardized tests. Journal of Writing Assessment, 11(1), 1-14.
Peters, M. A. y Vincent-Lancrin, S. (2021). AI and the future of assessment in education. International Journal of Educational Research, 105, 101-129.
Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), 1–13. https://doi.org/10.1186/s41039-017-0062-8
Romero, C. y Ventura, S. (2020). Educational data mining: A review of the state of the art. IEEE Transactions on Learning Technologies, 12(4), 852-867. https://doi.org/10.1109/TLT.2019.2916802
Schmid, L., Petropoulos, A. y Bogner, F. (2021). The influence of adaptive learning technologies on motivation and engagement. Computers & Education, 163, 104-127.
Selwyn, N. (2022). Should robots replace teachers? AI and the future of education. Polity Press.
Siemens, G., & Baker, R. S. (2018). Learning analytics and educational data mining: Towards a data-driven future of education. British Journal of Educational Technology, 49(4), 662–678.
Unesco. (2021). Artificial intelligence in education: Challenges and opportunities for sustainable development. https://unesdoc.unesco.org/ark:/48223/pf0000376709
Van Deursen, A. J., & Helsper, E. J. (2018). Digital skills and the digital divide: The moderating role of technology use. Information, Communication & Society, 21(8), 1153–1168.
West, D. M. y Allen, J. R. (2019). How artificial intelligence is transforming the world. Brookings Institution. https://www.brookings.edu/research/how-artificial-intelligence-is-transforming-the-world/
West, M., Kraut, R. E., & Chew, H. E. (2022). Predictive models in education: Bias, accuracy, and ethical considerations. Journal of Learning Analytics, 9(1), 32–47.
Williamson, B., y Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3), 223–235. https://doi.org/10.1080/17439884.2020.1798995
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. International Journal of Educational Technology in Higher Education, 16(1), 1–27.
Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.
How to Cite
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Sol de Aquino está bajo una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)

La Universidad Santo Tomás conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia anteriormente mencionada.




