##plugins.themes.bootstrap3.article.main##

Juan Carlos Salazar U. René Iral P. Juan Carlos Correa M. Adriana Rojas V. Juan M. Anaya

Resumen

Los modelos de estados múltiples han demostrado ser de utilidad para el análisis de datos longitudinales, particularmente aquellos que involucran información acerca de la progresión de una enfermedad a través del tiempo. Por otra parte, los métodos bayesianos son útiles en situaciones de alta complejidad cuando se usan técnicas como Monte Carlo Markov Chain. En este trabajo se implementa un método bayesiano basado en el muestreador de Gibbs con el fin de obtener las tasas de transición que gobiernan un modelo de tres estados con estructura markoviana de primer orden. Estas tasas de transición se vinculan con las covariables por medio de un modelo del tipo Andersen-Gill. De esta manera, la estimación óptima de los efectos de las covariables permitirá obtener mejores estimaciones de las tasas de transición. Esta técnica bayesiana se compara vía simulación con la técnica de estimación estudiada por Iral & Salazar (2007) y con un método basado en la discretización del soporte de la distribución posterior. Finalmente, estas técnicas de estimación se ilustran usando datos reales sobre pacientes colombianos con artritis reumatoide. 

##plugins.themes.bootstrap3.article.details##

Palabras Clave

artritis reumatoide, métodos bayesianos, modelos de estados, muestreador de Gibbs, múltiples, tasas de transición

Referencias
Aitkin, M. & Alf ́o, M. (1998), ‘Regression models for binary longitudinal respon- ses’, Statistics and Computing 8, 289–307.

Anaya, J. M., Pineda-Tamayo, R., Gómez, L. M., Galarza-Maldonado, C., Rojas- Villarraga, A. & Martin, J. (2006),
Artritis Reumatoide: Bases Moleculares, Clínicas y Terapéuticas, 1 edn, FUNPAR, Medellín.

Andersen, P. K., Borgan, o., Gill, R. D. & Keiding, N. (1993), Statistical Models Based on Counting Processes, 1 edn, Springer-Verlag, New York.

Bartholomew, D. J. (1983), ‘Some recent developments in social statistics’, Inter- national Statistical Review 51, 1–9.
Bhat, U. N. (1994), Elements of applied stochastic processes, 2 edn, Wiley, New York.

Casella, G. & George, E. I. (1992), ‘Explaining the Gibbs sampler.’, The American Statistician 46, 167–174.

Chung., K. L. (1983), Teoría elemental de la probabilidad y de los procesos es- toc ́asticos, Revert ́e, Barcelona.

Commenges, D. (1999), ‘Multi-State Models in Epidemiology’, Lifetime Data Analysis 5, 315–327.

Delgado-Vega, A. M., Martín, J., Granados, J. & Anaya, J. M. (2006), ‘Epidemiología genética de la artritis reumatoide: ’¿qué esperar en Am ́erica Latina?’, Biom ́edica 26, 562–584.

Frydman, H. (1992), ‘A Nonparametric estimation procedure for a periodically observed three state Markov process, with application to AIDS’, J.R Statist. Soc B 54, 853–866.

Frydman, H. (1995), ‘Semiparametric estimation in a three-state duration depen- dent Markov model from interval-censored observations with application to AIDS data’, Biometrics 51, 502–511.

Gao, S. (2004), ‘A shared random effect parameter approach for longitudinal de- mentia data with non-ignorable missing data’, Biometrics 23, 211–219.

Gordon, P. (2001), Bayesian statistical modelling, 1 edn, John Wiley & Sons, Chichester.

Hans, C. & Dunson, D. B. (2005), ‘Bayesian inference on umbrella orderings’, Biometrics 61, 1018–1026.

Harezlak, J., Gao, S. & Hui, S. L. (2003), ‘An illness-death scholastic model in the analysis of longitudinal dementia data’, Statistics in Medicine 22, 1465–1475.

Iral, R. & Salazar, J. C. (2006), Efecto de las covariables en la estimación de intervalos de confianza para las tasas de transición en un modelo de Markov de tres estados, in ‘Memorias XVI Simposio de Estadística 2006: Estadística en la Industria. III encuentro Colombia-Venezuela de Estadística’, Bucaramanga, Colombia, Universidad Nacional de Colombia.

Iral, R. & Salazar, J. C. (2007), Estimación de funciones de intensidad en un modelo de Markov de tres estados bajo el efecto de covariables con datos longitudinales, Master’s thesis, Escuela de Estadística, Universidad Nacional de Colombia, Sede Medellín.

Joly, P. & Commenges, D. (1999), ‘A penalized likelihood approach for a pro- gressive three-state model with censored and truncated data: Application to AIDS’, Biometrics 55, 887–890.

Kao, E. P. (1997), An introduction to stochastic processes, Duxbury Press, Bel- mont.

Kay, R. (1986), ‘A Markov Model for Analyzing Cancer Markers and Disease States in Survival Studies’, Biometrics 42(4), 855–865.

Lindsey, J. C. & Ryan, L. M. (1993), ‘A three-state multiplicative model for rodent tumorigenicity experiments’, Applied Statistics 42, 283–300.

Marshall, G., Guo, W. & Jones, R. H. (1995), ‘Markov: a computer program for multi-state Markov models with covariables’, Computer Methods and Pro- grams in Biomedicine 47, 147–156.

Ritter, C. & Tanner, M. A. (1992), ‘The Gibbs stoper and the griddy Gibbs sampler’, Journal of the American Statistical Association 87, 861–868.

Rojas-Villarraga, A., Diaz, F., Calvo, E., Salazar, J. C., Iglesias-Gamarra, A., Man- tilla, R. D. & Anaya, J. M. (2009), ‘Familial disease, the HLA-DRB1 shared epitope and anti-CCP antibodies influence time at appearance of substantial joint damage in rheumatoid arthritis’, Journal of Autoimmunity 32, 64–69.

Salazar, J. C., Iral, R., Calvo, E., Rojas, A., Hincapié, M. E., Anaya, J. M. & D ́ıaz, F. J. (2007), ‘Modelo de Markov de tres estados: comparaci ́on de parametrizaciones de la tasa de intensidad de transición. Aplicación a datos de artritis reumatoidea’, Revista Colombiana de Estadística 30(2), 213–229.

Salazar, J. C., Schmitt, F. A., Yu, L., Mendiondo, M. & Kryscio, R. J. (2007), ‘Shared random effects analysis of multistate Markov models: application to a longitudinal study of transitions to dementia’, Statist. Med. 3(26), 568–580.

Selke, W. (1984), ‘Monte Carlo studies of interfacial adsorption in multistate models’, Surface Science 144(1), 176–181.

Singer, B. & Spilerman, S. (1976), ‘The representation of social processes by Markov models’, American Journal of Sociology 82, 1–54.

Stephen, D. U., Kenneth, I. J., Robert, F. L., Peter, P. L., Scott, E. S. & Mychailo, B. T. (2010), Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework, Technical Report PNNL-20596, US Department of Energy.

Tanner, M. A. (1996), Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions, 3 edn, Springer, New York.

Ten Have, T. R., Miller, M. E., Reboussin, B. A. & James, M. K. (2000), ‘Mixed effects logistic regression models for longitudinal ordinal functional response data with multiple-cause drop-out from the Longitudinal Study of Aging’, Biometrics 56, 279–287.

Tyas, S. L., Salazar, J. C., Snowdon, D. A., Desrosiers, M. F., Riley, K. P., Mendiondo, M. S. & Kryscio., R. J. (2007), ‘Transitions to Mild Cognitive Impairments, Dementia, and Death: Findings from the Nun Study’, American Journal of Epidemiology 165(11), 1231–1238.

Van-der Heidje, D., Dankert, T. & Nieman, F. (1999), ‘ Reliability and Sensitivity to Change of a Simplification of the Shap van der Heidje radiological assessment in Rheumatoid Arthritis’, Rheumatology 38, 938–941.

Vauquelin, G. & Van-Liefde, I. (2005), ‘G protein-coupled receptors: a count of 1001 conformations’, Fundamental & clinical pharmacology 19(1), 45–56.

Wasserman, S. (1980), ‘Analyzing social networks as stochastic processes’, Journal of the American Statistical Association 75, 280–294.
Cómo citar
Salazar U., J. C., Iral P., R., Correa M., J. C., Rojas V., A., & Anaya, J. M. (2014). Enfoque bayesiano para obtener las tasas de transición en un modelo de estados múltiples. Aplicación a datos sobre artritis reumatoide. Comunicaciones En Estadística, 7(2). https://doi.org/10.15332/s2027-3355.2014.0002.06
Sección
Artículos