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Abstract 

Currently, the treatment for the central nervous system (CNS) and 

neurocognitive fluctuations as a result of sports injuries is considered a 

relatively uncovered area under the sports neuroscience paradigm. For example, 

the compensatory neural changes (e.g., brain cortical changes) and the cognitive 

load can create a feedforward loop that affects recovery and relapse after a 

musculoskeletal injury. Although several methodologies have been promoted 

(e.g., brain mapping systems, inhibitory control, and cognitive flexibility), 

neuromuscular deficits are frequently non-assessed and non-intervened during 

rehabilitation practices. Here we present an up-to-date description of the most 

relevant CNS changes after injury, the concept of somatotopic maps, and their 

relationship with motor control, intracortical inhibition, and cortical facilitation 

processes. Neuroplasticity strategies beyond the traditional structural-based 

approaches on the injured tissue are also covered; however, further research is 

needed to establish evidence-based recommendations for sports professionals.  

Keywords: cortical maps, proprioceptive distress, intracortical inhibition, motor 

control, pain, motor variability, neuroplasticity. 

Resumen 

En la actualidad, el tratamiento del sistema nervioso central (SNC) y las 

fluctuaciones neurocognitivas como consecuencia de las lesiones deportivas se 

considera un área relativamente poco abordada bajo el paradigma de la 

neurociencia del deporte. Por ejemplo, los cambios neuronales compensatorios 

(como los cambios corticales del cerebro) y la carga cognitiva pueden crear un 

bucle de alimentación que afecta a la recuperación y a la recaída después de una 

lesión musculoesquelética. Aunque se han promovido varias metodologías (por 

ejemplo, los sistemas de mapeo cerebral, el control inhibitorio y la flexibilidad 

cognitiva), los déficits neuromusculares no suelen ser evaluados ni intervenidos 

durante las prácticas de rehabilitación. En este artículo presentamos una 

descripción actualizada de los cambios más relevantes del SNC después de una 

lesión, el concepto de mapas somatotópicos y su relación con el control motor, 

la inhibición intracortical y los procesos de facilitación cortical. También se 
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cubren las estrategias de neuroplasticidad más allá de los enfoques tradicionales 

basados en la estructura del tejido lesionado; sin embargo, se requiere más 

investigación para establecer recomendaciones basadas en la evidencia para los 

profesionales del deporte. 

Palabras clave: mapas corticales, disfunción propioceptiva, inhibición 

intracortical, control motor, dolor, variabilidad motora, neuroplasticidad.  

Introduction 

The human body locomotion, as a dynamical system, is a complex network of 

interactions at different levels of functionality that contains both deterministic and 

stochastic elements (molecules, cells, tissues, and body systems) (Santuz et al., 

2020). Each time a muscle group contracts after neural activation it develops a 

force that triggers a work, so the latter is the expression of an energetic process 

that performs the transformation of chemical energy into mechanical work and 

heat. At this molecular level, the amount of chemical energy transformed into 

mechanical work in relation to the total energy used is called performance 

(Kraemer & Looney, 2012). In this sense, the human body can perform a given 

amount of work (e.g., physical effort) during a certain time using the energy 

supplied by several synchronized metabolic systems (mitochondrial and extra-

mitochondrial pathways) (Chamari & Padulo, 2015). For instance, the energy 

consumption during an explosive effort (e.g., powerlifting or sprinting) is 

provided mostly by the extra-mitochondrial systems (i.e., 

phosphocreatine/creatine kinase system and glycolysis) (Hargreaves & Spriet, 

2020). However, this energy is diminished through the exercise bout while central 

and peripheral fatigue progresses reduce intensity, which limits physical 

performance. The fatigue development will also affect motor control, quick 

decision-making, motor coordination, and reaction speed since it directly impacts 

the nervous system (Roschel et al., 2021). 

An external stimulus (e.g., exercise) is important to evoke systemic adaptations in 

a biological entity (e.g., the athlete). It is noteworthy mentioning that an efficient 

biological system is prepared in advance of possible energy needs (allostasis 

model) (Sterling, 2012). If the rate of neuromuscular activity is much higher than 

the intra-set recovery period (work-to-rest ratio as an external stimulus), there is a 

critical accumulation of several metabolites that might impair contractile function 

(e.g., H+, Pi, and insensitivity to sarcoplasmic Ca2+), demonstrating a causal role 

in central and peripheral fatigue (Sundberg & Fitts, 2019). However, suboptimal 

post-exercise recovery (including insufficient rest and energy/nutrient intake) 
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might result in systemic disturbances that increase the risk of a musculoskeletal 

injury (Bonilla et al., 2021a), which is represented by alterations in the 

myofibrillar structure and the decrease in force production (Grier et al., 2020; 

Tidball, 2011). In sports, muscle injuries can be caused by mechanical impacts as 

well, such as bruising and spraining, which depending on the muscle trauma 

would generate a transient or permanent neurological deficit (due to denervation) 

and consequent muscle atrophy (Fernandes et al., 2011).  

Exercise and the brain 

Under the sports neuroscience paradigm, we understand how the integration of 

neuromechanics allows for a better comprehension of human movement (Piskin 

et al., 2021). This field seeks to understand how the muscular system interacts 

with the brain to produce coordinated movements in complex and unexpected 

situations (Nishikawa et al., 2007; Seidel-Marzi & Ragert, 2020). Interestingly, 

the results of neuromechanical studies must be interpreted in the same context, in 

such a way that aspects of the body and the external environment are involved 

(Ting et al., 2015). In fact, understanding the interactions between the 

components of a given biological system and their control mechanisms results in a 

‘BioLogic’ interpretation that is systemic, evolutionary, and adaptive (Bonilla 

et al., 2021b; Bonilla et al., 2022). 

It has been found that physical exercise of different intensity levels has numerous 

effects on the efficiency of neuromuscular transmission; hence, the adaptation to 

explosive musculoskeletal efforts produces hypertrophy in the neuromuscular 

junction (Nishimune et al., 2014). This is independent of muscular hypertrophy 

although it is currently discussed whether these morphometric changes determine 

functional changes (Lepore et al., 2019). In individual adults, motor neurons and, 

to a lesser extent, the muscle itself release neurotrophic factors (e.g., brain-derived 

neurotrophic factor [BDNF] or neurotrophin 4 [NT-4]) that enhance spontaneous 

neuromuscular transmission (Sakuma & Yamaguchi, 2011). BDNF and NT-4 

stimulate the release of synaptic vesicles by increasing presynaptic Ca2+ reuptake, 

and these factors appear to induce the production of another neuregulin (Pinho 

et al., 2019). BDNF can regulate neuronal plasticity in the central nervous system 

(CNS) through various actions on dendritic and axonal remodeling, 

synaptogenesis, and synaptic efficiency, contributing to cognitive and 

neuromuscular performance (García-Suárez et al., 2021). In parallel, physical 

activity has been shown to increase cognitive function in animals and humans by 

the increased expression of BDNF in the hippocampus, probably via the muscle 
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FDNC5/irisin pathway (Islam et al., 2017), which is an integral area for learning 

and memory. It has been stipulated that due to the metabotropic activity of BDNF 

(which influences critical aspects of energy metabolism) the effect on cognition 

can be justified by relating energy metabolism and synaptic plasticity. Thus, there 

is a complex relationship between the regulation by exercise and BDNF on the 

cognitive level (Gomez-Pinilla et al., 2008). Complementary, it is important to 

clarify that muscle activity also increases NT-4 production by muscle fiber 

(Sakuma & Yamaguchi, 2011), among several other myokines with the potential 

to regulate exercise adaptations at the level of the nervous system (e.g., exerkines) 

(Vints et al., 2022). 

Injuries, cortical changes, and pain 

Injuries in sports are commonly addressed in clinical detail because of their 

musculoskeletal involvement associated with known and highly studied elements 

(Ruddy et al., 2019). The traditional view has been focused on the therapeutical 

treatment for recovery of the structure and the athlete’s performance by assessing 

different physical capacities such as strength, speed, resistance, and flexibility. 

This approach is necessary to accomplish the return to the exercise at the 

professional and amateur level; however, changes in the strategies for assessment 

and intervention of sports injuries rehabilitation have been occurring due to the 

novel detected changes that are produced in the brain in response to the tissues’ 

manifestations caused by the injury event (Piskin et al., 2021). It is noteworthy 

that the fibrous connective tissues, which inform about positional state and joint 

kinesthesia to the CNS using mechanoreceptors, might present neurophysiological 

changes after an injury. The afferent information would have changes in the 

reception caused by the joint deafferentation (Kapreli & Athanasopoulos, 2006). 

The analyses from the pathomechanics, the type of training, the kinematics, and 

other constituent elements at the time of determining the cause are based on the 

evidence available in the scientific literature (Rosa et al., 2014). Therefore, 

describing sports injuries should go beyond just categorizing and classifying 

them, in such a way that it is currently recommended to analyze these 

musculoskeletal dysfunctions with an orientation from both the posture alignment 

and biomechanics of the cranium-cervical region and their incidence in motor 

control (Ting et al., 2015). For instance, it should also include the disturbances 

associated with anatomical pathways as a function of the fascial network and its 

distal dysfunctional components in anatomical areas (such as the shoulder and 

knee) (Ajimsha et al., 2020).  
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In the brain, there are zones described and indexed, anatomical and functionally, 

as the primary motor cortex (M1) that are part of the somatotopic maps and 

overlap in relation to muscles and movement function, which are important for 

individualized control and movement coordination, respectively (Massé-Alarie 

et al., 2017). The study of somatotopic maps is performed by transcranial 

magnetic stimulation (TMS), a non-invasive method to stimulate the cerebral 

cortex, which has been used given its potential effectiveness in neuropsychiatric 

treatments, management of chronic pain (Galhardoni et al., 2015), intracortical 

inhibition and corticospinal excitability deficit (Piskin et al., 2021; Vucic & 

Kiernan, 2016). Moreover, the analysis of muscle contraction (e.g., 

tensiomyography) allows us to see acute and chronic responses of the CNS to 

physical activity (Goodall et al., 2012). The structural changes in the gray matter, 

in greater or lesser volume, are considered a consequence of the changes in axon 

outbreak, dendritic ramifications, synaptic density, glial volume, and regional 

angiogenesis, while the changes in the white matter involve adaptations to the 

activity that may be seen depending on the myelinated axons (Nordmark et al., 

2018). 

Motor coordination changes, constantly in cases of chronic musculoskeletal pain, 

include lumbar pain (Arendt-Nielsen et al., 1996). It is important to clear up that 

nociception does not necessarily mean pain. Due to noxious stimuli, like a muscle 

or joint injury, nociceptors are activated and produce pain; if this stimulus is 

repetitive, like in chronic lumbar pain or osteoarthritis, a sensitivity to the 

nociceptive system can be developed and this would increase the response to non-

harmful stimuli (Courtney et al., 2010). In fact, chronic pain is a widespread 

problem around the world, but Pain Neuroscience Education (PNE) is a novel 

approach to pain treatment. Influencing in a positive way brain maps associated to 

fear, or beliefs about exercise as a painful activity, may diminish menaces and 

strengthen safety. Thus, PNE as an intervention strategy might result in a 

reduction of kynophobia (Robins et al., 2016). 

Motor control and neuroplasticity 

Among the frequent changes associated with motor control after an injury, one 

can find voluntary muscular activation deficit (Goodall et al., 2012). Quadriceps 

weakness after knee surgery is a common situation, being pain and age a big part 

of the voluntary muscle activation variability. Quadriceps inhibition after surgery 

has several consequences in the recovery process (Berth et al., 2002). Using 

change strategies for motor control, as a brain-level process to reduce the 
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intracortical inhibition, may increase intracortical and cortical spinal excitability, 

and is one of the injury re-adaptation processes that are available today due to its 

proprioceptive de-afference (Kapreli & Athanasopoulos, 2006). Furthermore, 

some of the situations or aspects we need to pay attention to encompass injury 

chronicity are recurrence fear (Gokeler et al., 2013), atherogenic muscular 

inhibition (Rice et al., 2014), reduction of motor variability, and the cognitive 

load (Dhawale et al., 2017). 

According to Dhawale et al. (2017), “neuroplasticity is an inherent property 

(human evolution) that allows the nervous system to escape the restrictions of its 

own genome and, therefore, to adapt to environmental pressure, physiological 

changes, and experiences” (Dhawale et al., 2017). Currently, it is being studied 

how to make changes in the motor cortex, using motor control exercises in 

specific training programs. Therefore, it is considered that the first step in the 

treatment of musculoskeletal disorders must begin with brain observation and 

includes exercises and tools to reinforce it. Recent evidence is proving that 

physiotherapy, which uses only therapeutic exercises, must change its focus from 

musculoskeletal structural and functional changes to looking for changes in the 

CNS since these cortical changes have shown to have an important role in clinical 

manifestations. Central alterations have proved to have a key role in 

physiopathology and the clinical manifestations of musculoskeletal disorders 

(Armijo-Olivo, 2018). For example, modifications have been found in the 

representation of motor areas for joint stability such as transverse abdominis in 

patients with low back pain, and at the knee level in patellofemoral pain in vastus 

lateralis and vastus medialis muscles (On Uludağ, Taskiran, & Ertekin, 2004; 

Tsao, Galea, & Hodges, 2008). For more information about External focus – 

Internal focus and the implications for motor control following anterior cruciate 

ligament reconstruction, please refer to Gokeler et al. (2013). 

Practical Recommendations 

It is becoming clear that injuries and other musculoskeletal disorders are 

associated with changes in the motor cortex (i.e., cortical reorganization) among 

several other brain regions (Figure 1). The following are practical take-home 

points for sports and performance practitioners and researchers: 

 TMS is a non-invasive technique that might be used to study somatotopic 

maps. For example, the reorganization of the motor cortex has been 

demonstrated using TMS. 
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 Functional magnetic resonance imaging (fMRI) is useful to evidence 

alterations in brain function and structure in chronic pain patients (Baria et al., 

2011; Hall et al., 2016). Studies that have been performed with fMRI have 

discovered pain processing activities and their relationship to musculoskeletal 

or neurological disease due to impaired functional connectivity in information 

between brain regions (Baliki et al., 2011). 

 Recent neurophysiological discoveries have led to the emergence of other 

treatment strategies to address cortical reorganization such as Action 

Observation Therapy (AOT), which consists of observing behavior or actions 

performed by an operator during the rehabilitation process (Cuenca-Martínez 

et al., 2020). Unlike AOT, motor imagery is a mental simulation of a specific 

muscle action without any corresponding motor output. These motor 

simulation practice techniques have been proven to enhance recovery and 

muscle strength during the injury rehabilitation period (Paravlic, 2022).  

 Local vibration increases muscle activity and, therefore, has been used for 

rehabilitation and performance enhancement. In fact, it also increases activity 

in the somatosensory cortex and motor cortex (decreased sensorimotor 

inhibition) possibly due to the influence of corticocortical connections 

between S1 and M1 regions (Lapole & Tindel, 2015). Vibration has been 

shown to reduce the intracortical inhibition of corticospinal outputs to the 

vibrated muscles (Rosenkranz & Rothwell, 2012). 

 The influence on an untrained contralateral limb following a unilateral training 

program (also known as cross-education) has shown positive effects on the 

injury rehabilitation process (Hortobágyi et al., 2011; Green & Gabriel, 2018; 

Manca et al., 2021). Such positive changes in the absence of direct training on 

the injured region have raised the attention of practitioners as a 

countermeasure tool in certain unilateral injuries (e.g., hemiparesis caused by 

stroke, unilateral osteoarticular injuries, anterior cruciate ligament injury, etc.) 

(Colomer-Poveda et al., 2021). 

 Researchers might use brain stimulation techniques (e.g., TMS and direct 

current stimulation) to address the question of causality by inducing cortical 

changes and evaluating potential alterations in functional changes (Makin & 

Flor, 2020). 
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Figure 1. Characteristics of brain reorganization after injuries and 

musculoskeletal disorders. Source: designed by the authors (D.A.B.) based on 

Makin & Flor (2020)  

ACC, anterior cingulate cortex; BG, basal ganglia; HIP, hippocampus; HT, 

hypothalamus; M1, primary motor cortex; MCC, midcingulate cortex; nAC, 

Nucleus accumbens; OFC, orbitofrontal cortex; PAG, periaqueductal grey; PB, 

parabrachial nucleus; PCC, posterior cingulate cortex; PFC, prefrontal cortex; 

PPC, posterior parietal cortex; S1, primary somatosensory cortex; SII, secondary 

somatosensory cortex; SMA, supplementary motor area. 
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