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Resumen

In this paper, we illustrate in-depth Bayesian hierarchical statistical modeling ap-
proaches. Bayesian hierarchical modeling provides a robust framework for analy-
zing spatial data, accommodating complex dependencies, making possible incorpo-
rating external knowledge into the analysis. To do so, we consider a dataset from
80 stations in the Venezuelan state of Guárico consisting of accumulated monthly
rainfall in a time span of 16 years. The spatial correlation is modeled by using a
Matérn correlation function with a fixed smoothness parameter. Following Baner-
jee et al. (2014), we examine two fully Bayesian parametric approaches: One of
them static, based on a hierarchical model with latent variables; and the other spa-
tiotemporal, based on the dynamic framework given in West and Harrison (2006).
Both alternatives are sensible ones, but due to the nature of the data, the dynamic
model is more appealing since it gives a complete spatiotemporal characterization
of the response variable.

Palabras clave: Bayesian estimation; dynamic models; hierarchical modeling;
Markov chain Monte Carlo; spatial statistics.

Abstract

En este documento, ilustramos enfoques de modelado estad́ıstico jerárquico Ba-
yesiano en profundidad. El modelado jerárquico Bayesiano proporciona un marco
sólido para analizar datos espaciales, acomodando dependencias complejas, ha-
ciendo posible la incorporación de conocimiento externo al análisis. Para hacerlo,
consideramos un conjunto de datos de 80 estaciones en el estado venezolano de
Guárico, asociado con la precipitación mensual acumulada en un peŕıodo de 16
años. La correlación espacial se modela utilizando una función de correlación de
Matérn con un parámetro de suavidad fijo. Siguiendo a Banerjee et al. (2014),
examinamos dos enfoques paramétricos completamente Bayesianos: uno de ellos
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estático, basado en un modelo jerárquico con variables latentes; y el otro espa-
ciotemporal, basado en el marco dinámico de West y Harrison (1997). Ambas
alternativas son importantes, pero debido a la naturaleza de los datos, el modelo
dinámico es más atractivo ya que proporciona una caracterización espaciotemporal
completa de la variable respuesta.

Keywords: Estimación Bayesiana; modelos dinámicos; modelado jerárquico; Ca-
denas de Markov de Monte Carlo; estad́ıstica espacial.

1. Introduction

Bayesian hierarchical modeling of spatial data has wide-ranging applications, from
environmental science, where it is used to model phenomena like rainfall and po-
llution levels (Gelfand et al., 2010), to epidemiology, for analyzing the spread of
diseases over geographic regions (Lawson, 2018). By incorporating prior knowledge
and accommodating complex dependencies, Bayesian hierarchical modeling offers
a powerful tool for analyzing and interpreting spatial data, providing insights that
are both statistically rigorous and practically relevant (Cressie, 2015).

Such an alternative to modeling data constitutes a robust statistical approach
that leverages a multi-stage structure to analyze complex spatial structures. At its
core, this methodology involves several stages, each representing different sources
of variability. The first stage deals with the observed data, while the second stage
(typically including several layers) captures the underlying spatial process, often
incorporating latent variables to model unobserved factors (Banerjee et al., 2014).
Finally, the third stage includes hyperparameters that influence the distributions
at the process level. By organizing the model hierarchically, this approach allows
for a nuanced representation of spatial dependencies and uncertainties (Gelman
et al., 2013).

Under the Bayesian parading, the primary objective is to derive the posterior
distribution of the model parameters, which combines prior information with the
likelihood of the observed data (Hoff 2009, Gelman et al. 2013, Reich and Ghosh
2019). Bayesian inference techniques are then used to draw conclusions about the
parameters themselves, and most importantly, the underlying spatial processes. A
key feature of spatial data is the presence of spatial correlation, where observations
that are closer in proximity tend to be more similar (Cressie, 2015). This spatial
dependence is modeled using covariance functions like the Matérn covariance fun-
ction and Gaussian processes, which offer a flexible framework for capturing these
correlations (Williams and Rasmussen 2006, Stein 2012). We refer the reader to
(Banerjee et al., 2014, Chap. 2) for a exhaustive survey on covariance functions.

To perform the necessary Bayesian computations, Markov chain Monte Carlo
(MCMC) methods are employed, allowing for sampling from the posterior distri-
bution of the model parameters (Robert et al. 2004, Gamerman and Lopes 2006).
In scenarios involving spatiotemporal data, dynamic models, including state-space
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models, are used to account for both spatial and temporal dependencies, pro-
viding a comprehensive characterization of the data (West and Harrison 2006,
Cressie 2015). Model validation is an essential component of Bayesian hierarchical
modeling, with techniques such as posterior predictive checks and spatial cross-
validation used to assess model fit and predictive performance (Gelman et al. 2013,
Banerjee et al. 2014). Even though there is a humongous literature on spatiotem-
poral modeling, we strongly recommend the following books about the matter:
Gelfand et al. (2010), Diggle (2013), Banerjee et al. (2014), Cressie (2015), Wikle
et al. (2019), Oyana (2020), Sahu (2022), and Kent and Mardia (2022).

In this paper, we illustrate in-depth a couple of Bayesian hierarchical statistical
modeling approaches. To do so, we consider a dataset from 80 stations in the
Venezuelan state of Guárico consisting of accumulated monthly rainfall in a time
span of 16 years. The spatial correlation is modeled by using a Matérn correlation
function with a fixed smoothness parameter. Following Banerjee et al. (2014), we
examine two fully Bayesian parametric approaches: One of them static, based on
a hierarchical model with latent variables; and the other spatiotemporal, based
on the dynamic framework given in West and Harrison (2006). Both alternatives
are sensible ones, but due to the nature of the data, the dynamic model is more
appealing since it gives a complete spatiotemporal characterization of the response
variable.

The rest of the document is structured as follows: Section 2 provides an exhaustive
description of the data. Then, Section 3 analyzes the data in a cross-sectional way
using a static hierarchical model. Next, Section 4 does the same but dynamically
using dynamic spatiotemporal model. Finally, Section 5 discusses our main findings
and some alternatives for future research.

2. The Guárico dataset

Guárico is one of the 23 states of Venezuela covering a total surface area of 64,986
km2 (7.1% of Venezuela). Guárico’s geographical location is Latitude 7o 39’; 10o

02’ North, Longitude 64o 45’; 68o 02’ West (UTM1 zone 19) (?). Left panel in
Figure 1 shows the location of Guárico in Venezuela.

1Universal Transverse Mercator.
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Figure 1: Left panel: Location of Estado de Guárico (in red), Venezuela. Right panel: State of
Guárico (in yellow) and location of the 80 stations (in red).

We consider a dataset of n = 80 different stations in the Venezuelan state of
Guárico, consisting of accumulated monthly rainfall (in centimeters) in a time
span of 16 years from 1968 to 1983. Right panel in Figure 1 shows the location
of the 80 stations on a map of Guárico in which the elevation is also perceptible
through the satellite image –map downloaded from the Google server using package
RgoogleMaps in R (Loecher, 2012). The stations are irregularly scattered along
Guárico’s territory. Assuming that the different years are independent replicates
of the same random field and focusing only on the spacial structure of the data, we
firstly consider the mean rainfall as response variable, and the planar coordinates
(using the UTM projection system in kilometers) and the altitude (in kilometers)
as covariates.

First of all, we perform a graphical exploration of the rainfall as a function of
the location and the altitude in order to visually explore the trend function to be
consider in the models (see Sections 3 and 4 for details). Figure 2 displays the
80 locations in Guárico along with the mean rainfall intensity. This plot strongly
suggests that location is a fundamental factor in characterizing mean rainfall fea-
tures (as expected) because precipitation is clearly more intense towards Western
(on the border) and Southern Guárico than in the North-East of the state –the
Cordillera de la Costa in Venezuela might have a fundamental impact on the pre-
cipitation activity of northern Guárico. The previous behavior in precipitations is
also apparent in Figure 3 where a interpolation of the mean rainfall was carried out
by means of multilevel B-splines (Banerjee et al., 2014, p.46,47); a quadratic trend
in relation to location is recognizable due to the parabolic shape of the surface.

Finally, Figure 4 makes also clear the quadratic association between the mean
rainfall and the altitude where the corresponding station is located at. Figures
exhibited in Section 4 and further exploration (see Section 3) confirm that it is
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appropriate to consider quadratic terms in the trend. We use powerful R libraries
(R Core Team et al., 2013), such as fields, geoR, maps, Rgoolemaps, and in
particular spBayes (Finley et al., 2007) in this work in order to fit the data and
produce the corresponding plots.

3. Static hierarchical modeling

Taking into account the descriptive characterization of the trend given in Section
2, we consider a trend function µ(s) including the intercept, all the linear and
quadratic terms of easting, northing and elevation (7 terms in total); this trend
function produces a fit in which all terms are significant but elevation (see Table
1). That is why we consider the parsimonious trend function given by

µ(s) = x(s)Tβ =

6
∑

j=0

βj xj(s) (1)
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Figure 2: Guárico mean rainfall data. Sampling locations are shown as circles, with the radius
of each circle proportional to the corresponding mean rainfall.
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Figure 3: Interpolation of mean rainfall using multilevel B-splines.
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Figure 4: Guárico mean rainfall against elevation.

where β = [β0, β1, . . . , β6]
T, and x(s) = [x0(s), x1(s), . . . , x6(s)]

T, with

x0(s) ≡ 1 ,

x1(s) ≡ easting(s) , x2(s) ≡ northing(s) , x3(s) ≡ elevation(s) ,

x4(s) ≡ easting2(s) , x5(s) ≡ northing2(s) , x6(s) ≡ elevation2(s) .

Then, we dispose of p = 7 covariates in this case.

An ordinary linear regression of mean rainfall using the trend function (1) leads
to the mean rainfall residuals shown in the left panel of Figure 5. Although the
Q-Q plot in this Figure suggests that the distribution of the residuals is slightly
left-skewed, no obvious deviation from a Gaussian assumption is detected. This
is also suggested by a Shapiro-Wilk test whose corresponding p-value is 0.5152.
Therefore, we do not perform any additional transformations to the data in order
to achieve normality.
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8 Juan Sosa

Parameter Estimate Std. Error t value Pr(>|t|)
β0 intercept 20929.94 3366.24 6.22 0.0000
β1 easting -13.56 2.54 -5.34 0.0000
β2 northing -26.94 6.25 -4.31 0.0001
β3 elevation 127.23 334.82 0.38 0.7050
β4 I(easting^2) 0.01 0.00 5.09 0.0000
β5 I(northing^2) 0.01 0.00 3.88 0.0002
β6 I(elevation^2) 683.50 306.40 2.23 0.0288

Table 1: Results for the regression with linear predictor given in (1). All terms are significant

but the one corresponding to elevation. Residual standard error: 87 on 73 degrees of freedom.
Multiple R-squared: 0.784. Adjusted R-squared: 0.767. F-statistic: 44.3 on 6 and 73 degrees of
freedom, p-value: < 2E−16.

●

●
●

●
●

●
● ●

●

● ●

●

● ●

●

●

−
4

0
−

2
0

0
2

0

easting

year

β i

'6
8

'6
9

'7
0

'7
1

'7
2

'7
3

'7
4

'7
5

'7
6

'7
7

'7
8

'7
9

'8
0

'8
1

'8
2

'8
3

Figure 5: Values (left panel) and Q-Q normality plot (right panel) corresponding to the mean
rainfall residuals using the trend function (1).

In addition, the residual image plot in Figure 6 suggests that there is spatial de-
pendence even after accounting for the covariates. These patterns can be formally
examined using empirical semi-variograms. Two versions of semi-variograms are
offered in Figure 7. This figure indicates that the nugget effect considerably in-
fluences the variability of the mean rainfall, which will be confirmed later.

Additionally, directional semi-variograms of the detrended mean rainfall in the four
cardinal directions (not shown) enable us to identify potential anisotropic patterns
in spatial dependence. Although we observe jagged and erratic shapes, particularly
in the 0o directional semi-variogram, and some indications of sill anisotropies at
distances of 200 and 300 km in the Northwest direction, we do not place significant
emphasis on the implications of these directional semi-variograms. It is risky to
overinterpret and attribute too much significance to directional semi-variograms.
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Bayesian Hierarchical Modeling of Spatiotemporal Data 9

According to Banerjee et al. (2014, p. 38), plots of data generated from a simple
isotropic model will typically show differences of the magnitudes seen in the figure.

We consider binned semi-variograms and fitted semi-variograms in the Matérn2

family for the mean rainfall residuals (not shown here), using four different values
of the smoothness parameter ν, namely, ν = 0.5, 1.0, 1.5, 2.5, showing the sill (σ2),
the nugget (τ2), and the effective range (distance at which the correlation drops
to 0.05). The Matérn family of covariance functions is preferred for its flexibility
in modeling varying degrees of spatial smoothness, clear parameter interpretation,
and ability to encompass other common covariance functions. Furthermore, we
compute estimates of these quantities and the inverse of the spacial decay ϕ (not
shown here), for all the considered values of ν. These values indicate a significant
nugget effect. Furthermore, we observe that τ̂ increases with ν because an increase
in the assumed smoothness of the Gaussian field (measured by its mean-square dif-
ferentiability) is compensated by a corresponding increase in the estimated nugget
variance τ̂2. We notice also the non-orthogonality between ν and ϕ. As ν increases,
ϕ̂ decreases. This again illustrates a general feature of the Matérn model, specifi-
cally that the interpretation of ϕ cannot be made independently of ν (Diggle and
Ribeiro, 2007, p. 120).

Generally, the fitted semi-variogram is satisfactory, particularly for small distances
where the sample variogram exhibits relatively high precision (Diggle and Ribeiro,
2007, p. 121). We see that there is not a “best fit” in the sense that all cases perform
relatively similar. Recall that for the Matérn family, the corresponding process is k-
times mean-square differentiable if and only if ν > k. Matérn covariance functions
are particularly simple when ν is a half-integer, represented as ν = p+1/2, where
p is a non-negative integer (Rasmussen, 2006, p. 85). If a choice must be made for

2We consider the following parameterization of the Matérn family of covariance functions:
C(h) = (1/[2ν−1 Γ(ν)]) (h/φ)νKν(h/φ), where Kν is the modified Bessel function of order ν.
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Figure 6: Interpolation of mean rainfall residuals using multilevel B-splines.
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Figure 7: Cloud (isotropic) semi-variogram (left panel) and Binned (isotropic) semi-variogram
for the mean rainfall residuals.

the smoothness parameter, ν = 2.5 would be a more reasonable and parsimonious
option.

Figure 8 displays binned semi-variograms and fitted semi-variograms in the Matérn
family for the response variable and the residuals, using ν = 2.5 as smoothness
parameter. Here, the upper (green) and lower (blue) horizontal lines are the sill
(σ2) and the nugget (τ2), respectively, and the vertical (red) line is the effective
range. Furthermore, Table 2 exhibits the corresponding estimates (including the
spacial decay ϕ). These estimates serve as starting values in the Markov chain
Monte Carlo (MCMC) algorithms implemented below and in Section 4. This table
also highlights the significant nugget effect present in this problem.
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Quantity σ̂2 ϕ̂ τ̂2 Eff. Range

Response 37,419.96 42.77 11,233.39 253.12
Residuals 1,464.91 22.25 5,815.35 131.69

Table 2: Estimates of the parameters in the Matérn family and the nugget, and effective range,
using ν = 2.5 as smoothness parameter.

Now, we consider the static model

y(s) = x(s)Tβ + w(s) + ϵ(s) (2)

where x(s) and β are given as in (1). The residual is partitioned into two pieces:
The w(s) are assumed to be realizations from a zero-centered stationary Gaussian
spatial process, capturing residual spatial association, while the ϵ(s) represent
uncorrelated pure error terms. Thus, the w(s) introduce the sill (σ2) and spatial
decay (ϕ) parameters, while the ϵ(s) add the nugget effect (τ2).

We have data y(si), for i = 1, . . . , n. Let y = [y(s1), . . . , y(sn)]
T be the n-

dimensional vector gathering the mean rainfall corresponding to the n = 80 lo-
cations. Collecting the entire collection of model parameters into a single vector
θ = [β, σ2, τ2, ϕ], and the random effects into the vector w = [w(s1), . . . , w(sn)]

T,
parameter estimates can be obtained from the posterior distribution

p(θ | y) ∝ p(y | θ,w) p(w | θ) p(θ) ,

with

p(y | θ,w) = N(y | Xβ +w, τ2In), p(w | θ) = N(w | 0, σ2H(ϕ)),
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Figure 8: Binned (isotropic) semi-variograms and fitted semi-variograms in the Matérn family
(solid black line) for the mean rainfall and the mean rainfall residuals, using ν = 2.5 as smoothness
parameter. The upper (green) and lower (blue) horizontal lines sill (σ2) and the nugget (τ2),
respectively, and the vertical (red) line is the effective range.
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where X is an n×p design matrix storing of all the covariate information given by
the p-dimensional vectors x(s) in each one of the n locations, and H(ϕ) is a corre-
lation matrix with Hij = ρ(si, sj ;ϕ) and ρ is the Matérn correlation function on
R

2 (which is a valid correlation function) indexed by the spatial decay parameter ϕ
(The smoothness parameter ν is fixed at a value of 2.5). Furthermore, independent
priors are chosen for the remaining parameters, i.e., p(θ) = p(β) p(σ2) p(τ2) p(ϕ),
where

p(β) = N(β | 0p, bβ Ip) , p(σ2) = IG(σ2 | aσ2 , bσ2) ,

p(τ2) = IG(τ2 | aτ2 , bτ2), p(ϕ) = U(ϕ | aφ, bφ) .

As stated before, the empirical semi-variogram estimates of the sill (σ2), nugget
(τ2), and spatial decay (ϕ) in Table 2 offer valuable insights for setting the hyper-
parameters in the priors mentioned above, and serve as effective starting values
for implementing the hierarchical model. We implement a MCMC algorithm with
40, 000 iterations to generate samples from the posterior distribution. Trace and
autocorrelation plots (not shown here) of the regression parameters β show that
the corresponding chains achieve convergence quickly and that there is no signs
of autocorrelation issues. Similarly, chains of σ2, τ2, and ϕ displayed in Figure
9 show reasonably fast convergence, but they exhibit a notably volatile behavior,
particularly the chain corresponding to σ2. The overall Metropolis acceptance rate
is 39.31%.

We discard the initial 32,000 iterations (burn-in period) and, to ensure approxima-
tely independent draws, we select one sample from every 32 iterations, resulting
in a total of 1000 posterior samples. Those 1000 samples are approximately in-
dependent and identically distributed according to the corresponding posterior
distribution and form the basis of posterior inference. Table 3 summarizes the
posterior distribution of all the parameters in the model. We present there the
correspondent posterior medians and 95% posterior credible intervals.

We also obtain the posterior mean for the spatial random effects of the model.
These posterior means can then be interpolated across the domain to produce

Parameter 2.5% 50% 97.5%
σ2 sill 10,856.85 28,990.83 98,383.63
τ2 nugget 5,203.77 7,514.75 10,219.66
1/ϕ decay 0.0100 0.0174 0.0295
β0 intercept -1,809.63 184.15 2,263.38
β1 easting -8.93 5.02 21.64
β2 northing -14.11 0.21 12.18
β3 elevation -462.98 211.49 975.6182
β4 I(easting^2) -0.0136 -0.0034 0.0053
β5 I(northing^2) -0.0071 -0.0010 0.0065
β6 I(elevation^2) 6.18 595.30 1,187.41

Table 3: Posterior summary of the posterior distribution of θ = [β, σ2, τ2, φ].
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Figure 9: MCMC trace plots (left) and Monte Carlo approximations to the posterior densities
(right) of σ2, τ2, and φ.

“maps” of spatial variables. We plot the corresponding contour and perspective
plots side by side as shown in Figure 10.

4. Dynamic spatiotemporal modeling

The approach adopted here applies to the setting where space is viewed as con-
tinuous, but time is taken to be discrete. We view the data as a time series of
spatial process realizations and work in the setting of dynamic models, building
upon previous work by West and Harrison (2006) and ?.

Let yt(s) be the response at location s and time t. Following Banerjee et al.
(2014, Sec. 4, p. 344), we model yt(s) using a measurement equation that includes
a regression specification with a space-time varying intercept, along with serially
and spatially uncorrelated zero-centered Gaussian disturbances as measurement
errors, denoted by ϵt(s).

Next, a transition equation introduces a p-dimensional coefficient vector βt, which
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Figure 10: Interpolation of the mean of the random spatial effects in the hierarchical model
using multilevel B-splines.

represents purely temporal components (i.e., time-varying regression parameters),
along with a spatiotemporal component ut(s). Both terms are generated through
transition equations, capturing their Markovian dependence in time. The overall
model is written as

yt(s) = xt(s)
Tβt + ut(s) + ϵt(s) , ϵt(s)

ind∼ N(0, τ2t ) ,

βt = βt−1 + ηt , ηt
iid∼ N(0,Ση) ,

ut(s) = ut−1(s) + wt(s), wt(s)
ind∼ GP(0, Ct(·, ·;θt)) ,

for t = 1, . . . , Nt. For each time t, xt(s) is a p×1 vector of predictors and βt is a p×1
vector of regression parameters. The GP(0, Ct(·, ·;θt)) is a spatial Gaussian pro-
cess with covariance function Ct(s1, s2;θt) = σ2

t ρ(s1, s2;ϕt), where θt = [σ2
t , ϕt]

and ρ(·;ϕ) is a valid correlation function –the Matérn correlation function with
smoothness parameter ν = 2.5 in this case. We also assume that β0 ∼ N(m0,Σ0)
and u0(s) ≡ 0, completing the prior specification for a well-identified Bayesian
hierarchical model that yields reasonable dependence structures.

We also assume that the same locations are monitored at each time point, resulting
in a space-time matrix where the rows index the locations and the columns index
the time points, i.e. the (i, j)-th element is yj(si). The algorithm described in
Banerjee et al. (2014, Sec. 5, p. 352) will accommodate the situation where some
cells of the space-time data matrix may have missing observations, as is common
in monitoring environmental variables.

We now consider again the Guárico data, which consisting of accumulated monthly
rainfall (in centimeters) from n = 80 different stations in a time span of Nt = 16
years from 1968 to 1983. Figure 11 the interpolation of rainfall using multilevel
B-splines in a time span of Nt = 16 years from 1968 to 1983. We also take into
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account the same covariates as in Section 3 and the estimates of the parameters
given there in order to initialize the algorithms implemented here. Even though
the original dataset contains 190 missing values (out of 1280 observations, i.e.,
14.8% of the data points are missing), we set 8 (randomly selected) observations
from station 5 (which has complete information) to NA in order to illustrate the
predictive capabilities of this modeling framework. The true values of the holdout
observations are retained for subsequent comparison.

Next, we specify appropriate priors for the model parameters. The variogram
analysis conducted in Section 3 guides the specification of priors and hyperparame-
ters, following a similar approach as detailed in Section 3. The MCMC treatment
applied in this phase is also analogous to that used in the aforementioned section.
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Figure 12: Posterior distribution medians (in blue) and 95% credible intervals (in gray) for
model intercept and predictors. The line in red corresponds to the estimate of the parameter in
the static model.
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Time series plots of posterior summary statistics for parameters are often useful for
exploring their temporal evolution. For regression coefficients, these plots depict
the time-varying trends in the response and the effects of covariates. Figure 12
displays the evolution for all the parameters in β. In each frame of this Figure, we
have also included 95% credible intervals along with a red line corresponding to
the estimate of the respective parameter in the static model.

Figure 13 shows the the evolution for σ2, 1/ϕ, and τ2. There are noticeable trends
in the variance components over time. In addition, we see that the value of the
spatial decay remains almost constant and equal to the value in the static model,
but it has considerable increments in 1978, 1980, and 1983.
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Figure 13: Posterior distribution medians (in blue) and 95% credible intervals (in gray) for θ

and τ2. The line in red corresponds to the estimate of the parameter in the static model.

Finally, in order to evaluate the goodness-of-fit and the predictive capacity of the
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model, we plot the fitted values against the observed values, and the predictive
values against the observed values of the randomly removed observations in station
5. These plots are provided in Figure 14. From the left panel of this Figure we see
that the model fits reasonable well to the data. Only six (0.55% of the observed
values) credible intervals corresponding to observations with the lowest rainfalls
miss the actual observed value. Furthermore, from the right panel of the Figure,
we conclude that the predictive capacity of the model is rather promising since all
the 95% credible intervals of the observations being tested contain the true value
of the rainfall.
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Figure 14: Fitted values (left) and holdout predicted values (right).

5. Discussion

There are many different kinds of spatiotemporal data and extensive statistical
literature that addresses most common scenarios. The dynamic strategy elaborated
here provides a rather flexible approach to characterize spatiotemporal settings,
like this one, in which the time-varying evolution of rainfall is fully described
in terms of the possibly changing impact of the covariates conforming the linear
trend.

The fully Bayesian approach considered here allows us to handle properly mis-
sing values and to validate the predictive capabilities of the model. Other possible
strategies include dynamic frameworks to model residual spatial and temporal
dependence. These proposed frameworks are flexible and easily extended to ac-
commodate non-stationary and multivariate outcomes(Banerjee et al., 2014, Sec.
11, p. 329).
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A. Notation

The cardinality of a set A is denoted by |A|. If P is a logical proposition, then
1 {P} = 1 if P is true, and 1 {P} = 0 if P is false. ⌊x⌋ denotes the floor of x,
whereas [n] denotes the set of all integers from 1 to n, i.e., {1, . . . , n}. The Gamma
function is given by Γ(x) =

∫

∞

0
ux−1 e−u du. Matrices and vectors with entries

consisting of subscripted variables are denoted by a boldfaced version of the letter
for that variable. For example, x = (x1, . . . , xn) denotes an n × 1 column vector
with entries x1, . . . , xn. We use 0 and 1 to denote the column vector with all entries
equal to 0 and 1, respectively, and I to denote the identity matrix. A subindex
in this context refers to the corresponding dimension; for instance, In denotes the
n× n identity matrix. The transpose of a vector x is denoted by xT; analogously
for matrices. Moreover, if X is a square matrix, we use tr(X) to denote its trace

and X−1 to denote its inverse. The norm of x, given by
√
xTx, is denoted by ∥x∥ .

Now, we present the form of some standard probability distributions used in this
article:

Multivariate normal:

A d × 1 random vector X = (X1 . . . , Xd) has a multivariate Normal distri-
bution with parameters µ and Σ, denoted by X | µ,Σ ∼ Nd(µ,Σ), if its
density function is

p(x | µ,Σ) = (2π)−d/2 |Σ|−1/2 exp
{

− 1
2 (x− µ)TΣ−1(x− µ)

}

.

Inverse Gamma:

A random variable X has an Inverse Gamma distribution with parameters
α, β > 0, denoted by X | α, β ∼ IG(α, β), if its density function is

p(x | α, β) = βα

Γ(α)
x−(α+1) exp {−β/x}, x > 0 .
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