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Resumen

En biologia molecular los estudios funcionales son ttiles para la caracterizacion
de variantes o mutaciones en el genoma humano via experimentacién con mode-
los animales (embriones de peces, por ejemplo). Estos experimentos consisten en
modificar genéticamente dichos embriones inyectdndolos con moléculas de acido
ribonucleico mensajero (mRNA, en inglés) y se caracterizan por ser destructivos,
tomar mucho tiempo y generar poca informacién. En este trabajo se propone e
ilustra, con datos reales, una metodologia para el anilisis estadistico de este tipo
de experimentos utilizando un enfoque bayesiano. Los resultados obtenidos con
esta metodologia concuerdan con lo observado a nivel molecular.

Palabras clave: genética, estudios funcionales, estadistica bayesiana, modelos
jerarquicos, muestreador de Gibbs.

Abstract

In molecular biology, functional studies play an important role in the characteriza-
tion of variants or mutations in the human genome by experimenting with animal
models (e.g., fish embryos). These experiments, which consist in genetically mo-
difying the embryos by injecting mRNA, are characterized by being destructive,
time consuming and generate few information. We propose and illustrate, with
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real data, a bayesian methodology for the statistical analysis of such experiments.
This methodology provides comparable results to those observed at the molecular
level.

Key words: Genetics, Functional Studies, Bayesian Statistics, Hierarchical Mo-
dels, Gibbs Sampler.

1. Introduccion

Una mutacion se define, en términos generales, como un cambio repentino y es-
pontaneo en la secuencia del genoma de un organismo; en términos estadisticos,
esto es equivalente a eventos raros (Roessler et al. 2012). Por esta razoén, la de-
terminacién de si una mutacién especifica tiene o no efecto en la secuencia del
genoma, altera el producto de un gen o interfiere en el funcionamiento de dicho
gen, es de gran interés. Aquellas mutaciones por las cuales el producto del gen
se hace menor o este tiene poca o ninguna funcién, son denominadas mutacio-
nes de pérdida de funcionalidad (LOF, por sus siglas en inglés); aquellas en las
que el producto del gen adquiere una nueva (pero anormal) funcién se denominan
mutaciones de ganancia de funcionalidad (GOF, por sus siglas en inglés).

Con el propésito de entender las bases genéticas y moleculares de las enfermedades,
y a su vez poder cuantificar la actividad funcional de las mutaciones de interés, una
de las aproximaciones mas comunes en este tipo de experimentos es utilizar mode-
los animales, por ejemplo, peces zebra (o zebrafish en inglés). Entre las ventajas que
se obtienen al utilizar este modelo zebrafish como modelo animal se encuentran,
entre otras, su equivalencia taxonémica (Chakraborty et al. 2009) y la homologia
genética con los humanos (Kari et al. 2007). En este tipo de experimentos, la
determinacién de si una mutacién es LOF o GOF consiste, fundamentalmente,
en construir una curva dosis-respuesta y cuantificar la actividad funcional de las
variantes o mutaciones de interés (ampliado en las secciones 211y 2.2]).

Dentro del interés de los investigadores se encuentra determinar el nimero de em-
briones que tendran determinada caracteristica cuando se inyecta una dosis d* a
un grupo de n* embriones, y estimar la dosis dala que los embriones presentan
dicha caracteristica en mayor proporcién, por lo que, en ambos casos, la construc-
cién de un modelo estadistico apropiado es fundamental. Sin embargo, por tratarse
de experimentos destructivoﬂ, la cantidad de informacién que se genera es poca y
como consecuencia los métodos estadisticos tradicionales (revisados en Ritz 2010)
pueden dificilmente ser aplicados. Adicionalmente, puesto que la caracteristica de
interés puede variar de un embrién a otro o entre grupos de embriones (variabi-
lidad intra e inter embrién), la incorporacién de estas fuentes de variacién en el
modelo final también es deseable. Infortunadamente, en este tipo de experimentos

1 Aunque no todos los n embriones inyectados con una dosis d mueren, biolégicamente este
experimento se considera destructivo, puesto que las inyecciones deben realizarse en un periodo
de tiempo t especifico durante la etapa de desarrollo de los embrién y cualquier otra dosis &
adicional cambiaria sus caracteristicas genéticas.
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la posibilidad de incluir estas fuentes de variacién, utilizando métodos estadisticos
tradicionales, es remota y la necesidad de nuevas estrategias de andlisis es evidente.

En este documento presentamos una metodologia bayesiana para el andlisis es-
tadistico de este tipo de experimentos, que constituye una alternativa viable y facil
de implementar en cualquier programa de andlisis estadistico. Aunque la aplicacion
de métodos bayesianos en genética no es nueva (Shoemaker & Painter 1999, Blan-
gero et al. 2005, Ding 2006, Stephens & Balding 2009, Yi et al. 2011, Innocenti
et al. 2011, Gompert & Buerkle 2011), la cuantificacién de la actividad funcional
de variantes genéticas si lo es. Como ilustracién de esta metodologia, considera-
mos la construccién de una curva dosis-respuesta y la cuantificacién de una de las
variantes genéticas presentadas en Domené et al. (2008), correspondientes a expe-
rimentos de rescate (rescue, por sus siglas en inglés) (Epstein & Shakes 1995, pp.
468-471) con grupos de embriones de zebrafish. La ventaja de esta metodologia,
como se mostrard mas adelante, es que una vez se tienen las distribuciones conjun-
ta y marginales a posteriori la inferencia es directa (Gelman et al. 2004, Kerman
& Gelman 2006, Barrera & Correa 2008). Adicionalmente, los modelos bayesianos
permiten incluir informacién experimental previa y/o el conocimiento de un grupo
de expertos acerca de un parametro de interés, utilizando técnicas de elicitacion
(Garthwaite et al. 2005). En experimentos bioldgicos, este tipo de informacion es
muy valiosa.

2. Metodologia

2.1. Curva dosis-respuesta

Considere un estudio funcional cuyo objetivo es cuantificar la actividad de K mu-
taciones genéticas (por simplicidad, asumiremos K = 1). Adicionalmente, durante
la ejecucién del estudio se realizan m (m > 1) experimentos independientes de
tipo binomial en los que la caracteristica de interés (también llamada fenotipo)
es claramente diferenciable entre unidades muestrales (por ejemplo, embriones de
zebrafish). Si'Y; es una variable aleatoria que representa el nimero de embriones
con el fenotipo cuando n; de ellos son inyectados con una dosis d; de un compuesto
particular, entonces Y; ~ Binomial(n;, 6;), con ; € (0,1) el pardmetro de la dis-
tribucién (¢ = 1,2,...,m). La funcién de masa de probabilidad de Y; es (Casella
& Berger 2001):

p(Yizyiwi):(”i>93i(1—9i)"iyi yi=1,2,....n;, i=12_....m (1)
Yi

Puesto que en muchos casos dosis d altas producen una mayor cantidad de em-
briones con el fenotipo de interés, es natural pensar que existe una funcién g tal
que 6 = g(d). Teniendo en cuenta la restriccion de 6 en el espacio parametral, la
funcién logit(6;) definida como:
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1og(19i9_>_a+ﬁdi i=1,2,...,m (2)

constituye una buena eleccion.

La implementacién de una estrategia bayesiana requiere la existencia de una fun-
ci6n de verosimilitud L y distribuciones a priori para los pardmetros (Gelman
et al. 2004, Berger 2010). Al despejar 6; de () y reemplazarlo en (), el logaritmo
de L para m experimentos estd dado por:

l=log L(y1,vy2,---,ym |, B,d) Z {yi(a + Bd;) — nilog(1 +e*TFd)} (3)
i=1

Observe que en esta expresién todas las cantidades son conocidas excepto los
parameros a y B que relacionan linealmente a 6 con d.

En el caso de dos parametros es posible utilizar una rejilla de busqueda en el
rectdngulo [a1,b1] X [az, ba] sobre la cual se evalia (3)); este rectdngulo constituye
las distribuciones a priori para a y 8 (Gelman et al. 2004, Kerman & Gelman
2006). La seleccién de los valores (ag,by), k = 1,2, puede llevarse a cabo a partir
de la informacién muestral, via experimentacién o basado en informacién previa
(Gelman et al. 2004). Finalmente, la distribucién conjunta a posteriori para («, 3)
se obtiene como:

C1

YD a

[a1,b1] X [ag,bg]

p(a, B |Datos) ~

(4)

con ¢; = e!~m&{l} | Similarmente, las distribuciones marginales a posteriori son

p(a, B | Datos)
> p(a, | Datos)

[a2,b2]

p(a| Datos) =

(5)

p(a, 8] Datos)
> p(a, B Datos)

[a1,b1]

p(f | Datos) ~

(6)

Una vez se tienen las distribuciones conjuntas y marginales a posteriori, la inferen-
cia es directa (Gelman et al. 2004, Kerman & Gelman 2006, Barrera & Correa 2008)
y preguntas tales como (i) cudl es el nimero de embriones que tendrén el feno-
tipo cuando un grupo de n* embriones se inyecta una dosis d* y (ii) cudl es la
dosis d a la que los embriones presentan el fenotipo en mayor proporcién, pueden
responderse facilmente (ver Seccién B)).
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2.2. Actividad funcional de una variante genética

Como se mencioné en la seccién anterior, uno de los objetivos del andlisis de
curvas dosis-respuesta es la determinacion de la dosis d que genera el fenotipo
de interés en mayor proporcién. Consideremos ahora un conjunto de m (m >
1) experimentos similares a los de la seccién 2] pero en los que grupos de n;
embriones (i = 1,2,...,m) son ahora inyectados con un compuesto diferente y se
utiliza una dosis d fija.

«, B

W\

01 02 93 ... 9771,

.

Y1 Y2 Y3z .- Ym

Figura 1: Estructura del modelo jerdrquico propuesto para el andlisis bayesiano
de la actividad funcional de una mutacion. En el primer nivel, combinaciones de
los hiperpardmetros («, ) generan el pardmetro 6;, responsable de la aparicion
del fenotipo de interés en y; embriones de un grupo de n; embriones que fueron
inyectados (i =1,2,...,m). Fuente: elaboracion propia.

SiY; es el nimero de embriones inyectados que presentan el nuevo fenotipo y n; (fi-
jo) es el nimero total de embriones inyectados, entonces Y; | §; ~ Binomial(n;, 6;),
con 0 < 6; < 1,7 =1,2,...,m. Por tratarse de una proporcion, es razonable
pensar que 6; | a, 8 ~ Beta(q, 8), con «, 8 > 0 los hiperpardmetros del modelo; la
distribucién conjunta de estos es p(«, 8). De esta forma se tiene entonces que el
vector de observaciones y = (y1,¥2, - .., Ym) puede ser visto como una realizacién
de una estructura jerarquica (vea Figura [I]). Comparado con los métodos tradi-
cionales (vea Ritz (2010)), este modelo jerdrquico permite considerar la variacién
que existe de un embrién a otro y/o entre grupos de embriones (variabilidad intra
e inter embrién) y no requiere grandes tamanos de muestra.

La distribucién a posteriori del modelo completo estd dada por:
p(,0]y) o p(¢) p(6]d) p(y|6)
T T« +08) o T n; . s
— o [ ot o T (2 )ora - sy

Urorm” L1,
= p(¢) [ ] Beta(6i|¢) Binomial(y,|n;, 6;) (7)
i=1
donde ¢ = (a, B) es el vector de hiperpardmetrosy @ = (61,02, ...,0,,) es el vector

de parametros.
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El muestreador de Gibbs (ver Casella & George (1992) para una introduccién)
hace parte de los algoritmos iterativos basados en cadenas de Markov (también
denominadas Markov chain Monte Carlo, o MCMC) que permiten obtener mues-
tras de la distribuciéon a posteriori de un vector de parametros ® de dimensién
p cuando esta no tiene forma conocida o p — oo (Gelman et al. 2004, Barrera &
Correa 2008). Especificamente, el muestreador de Gibbs se utiliza cuando la dis-
tribucién conjunta de ® es desconocida pero la distribucién condicional de ©; es
conocida (j = 1,2,...,p). Si definimos ©7' = (67", 05", ..., 0! ],..., 0,1
entonces, en la iteracion ¢ del algoritmo, @; ~ p(©;] @t:jl , Datos), de tal forma
que el muestreo de la distribucién a posteriori es inmediato toda vez que se tengan
valores iniciales para @ (Gelman et al. 2004, Seccién 11.2). Dadas las caracteristi-
cas de (@), utilizaremos el muestreador de Gibbs para obtener muestras aleatorias
de esta distribucién.

Las distribuciones a posteriori condicionales de () son
p(0il,y) o 001 —6,)P eV (1 — 6,)mY

= Beta(a+yi,ni + 8 —vi) (8)
Y p(¢]6.y) o p(¢) []Beta(¥;la, B) 9)
=1

Observe que las distribuciones (@) y (@) estdn en funcién de p(¢) = p(o,B) ¥
que a pesar de la estructura jerdrquica del modelo, la distribucién p(8;|¢,y) tiene
una forma (cerrada) conocida. En la préctica, esto tltimo facilita enormemente la
generaciéon de muestras para 6; (i = 1,2,...,m).

Teéricamente es posible utilizar diferentes distribuciones a priori para p(¢) que
reflejen nuestro conocimiento del experimento (Berger 2010, Capitulo 3); la se-
leccién de cudl de estas distribuciones es la mas adecuada es motivo de extensa
investigacién (Kass & Wasserman 1996, Casella & Berger 2001, Gelman et al.
2004, Berger 2010). En nuestro caso, las distribuciones a priori utilizadas para
p(¢) fueron p(¢) x (a+ 8)~%/? y p(a, B) x 1, esta tltima también conocida como
la distribucién a priori no informativa de Laplace. Sin embargo, la metodologia
aqui presentada no se limita a la escogencia de estas distribuciones a priori. Obser-
ve que a > 0y 8 > 0 puesto que corresponden a los pardmetros de una distribucién
Beta.

Para la generacién de muestras de la distribucién a posteriori de p(¢) se definieron
tres muestreadores de Gibbs con B = 10000 iteracionesd. En el primero, para la
iteracion ¢, o) ~ Ny (¢*=1),%4); en el segundo, log ¢ ~ Ny (¢*=1),5,) y en
el tercero, log p(Y) ~ Ny (¢(t—1),2¢) (t = 1,2,...,B). La matriz de varianzas-
covarianzas utilizada fue:

g g
Eti) _ « o,
Oa,p 0B
2Dada la complejidad de las distribuciones a posteriori conjuntas y marginales, el muestreador
de Gibbs se utilizé en conjunto con rejection sampling.
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con (0a,0a,8,08) = (2,0,2) para el primer muestreador, (3,0,3) para el segundo
y (2,1/3,3) para el tercero. El vector de valores iniciales fue, en todos los casos,
#© = (1,1). La implementacién de estos muestreadores en R (R. Core Team 2013)
se encuentra disponible a peticién del lector.

3. Aplicacion

3.1. Curva dosis-respuesta

Como ilustracién, se seleccionaron 5 experimentos tipo rescue en zebrafish en el
que se inyectaron un total de 114 embriones con 1 ng de Hdl MOB y diferentes dosis
de mRNA del alelo de referencia (wild-type o WT, en inglés) del gen Sine oculis
homeobox homolog 3 (SIX3). Este gen estd ubicado en el cromosoma 2p21 y tiene
una longitud de 999 pares de bases (Roessler et al. 2012); mutaciones en este gen
han sido asociadas holoprosencefalia (HPE en inglés) (Wallis et al. 1999, Dubourg
et al. 2004)@. Las duplas dosis/tamano de grupo counsideradas por experimento
fueron 2.5/38, 5/36, 10/33, 25/5 y 50/2 y el fenotipo de interés correspondié a
la presencia de ambos ojos en el embrién (obtener un embrién normal). En la
Figura Zh se presenta la curva dosis-respuesta obtenida. Note que mientras en
el grupo de 38 embriones la mitad de ellos son normales, la proporcién aumenta
considerablemente cuando se inyecta una dosis de 50 pg.

La regién de evaluacién de (@) se definié como [—2, 2] X [0, 1] gracias a experimentos
previos que indicaban que a mayores dosis la proporciéon de embriones normales
era mayor. En las figuras2b y 2k presentamos la distribucién conjunta a posteriori
para 'y 8 y sus contornos de probabilidad constante, respectivamente. Llama
la atencion que sin haber definido una estructura de correlaciéon para a 'y 3, los
contornos de la distribucién conjunta a posteriori indiquen que esta existe (p =
—0.884, valor-p < 10719).

Tabla 1: Medidas para las distribuciones a posteriori de a y B en (2). Fuente:
elaboracion propia.

Pardmetro Moda Media Mediana Desviacion Estandar 95 %CI
« -0.636 -0.655 -0.636 0.543 (-1.773, 0.227)
15} 0.393 0414 0.404 0.124 (0.192, 0.636)

3Hdl se refiere al gen headless (o simplemente hdl) en zebrafish. MO corresponde a morpholino
oligonucleotide, moléculas utilizadas para modificar la expresién de un gen. Embriones inyectados
solo con Hdl MO sufren alteraciones que dificultan el desarollo de los ojos y otras estructuras a
nivel anterior. La coinyeccién de Hdl MO y WT SIX38 en zebrafish permite rescatar los embriones,
es decir, obtener embriones normales (Domené et al. 2008).

4Para mayor informacién se sugiere consultar el nimero especial del American Journal of
Medical Genetics en http://bit.1ly/zVjwQL.
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Figura 2: (a) Curva dosis-respuesta en Domené et al. 2008; (b) distribucion a
posteriori para (a, 8); (c) contornos de (b). Distribuciones a posteriori de (d) a
y (e) B. En (a) el eje y representa la proporcion de embriones normales; en (c)
la interseccion de las lineas punteadas corresponden GpyLE Y BMLE. La medida pg
corresponde a 10712 g. Fuente: elaboracion propia.

Las medidas de resumen para las distribuciones a posteriori de o'y 3 se presen-
tan en la Tabla[Il (vea figuras 2 y k). Nuestros resultados indican que por cada
unidad que se incremente la dosis de WT SIX3 mRNA, el odds de que el embrion
sea normal incrementa de 1 a 4% = 1.513 (95 %CI = 1.211-1.967). Comparati-
vamente, los estimadores de méxima verosimilitud (MLE) para a y 8 utilizando
un modelo lineal generalizado (MLG, datos no presentados) son, respectivamen-
te, Gy = —0.582 y BMLE = 0.386 (ver Figura 2k); el odds incrementa de 1 a
€386 = 1.471 (95 %CI = 1.161-1.866).

A partir de las distribuciones a posteriori conjunta y marginales, se realizaron
algunos andlisis adicionales que incluyeron () la comparacién del nimero de em-
briones normales reales con los predichos al utilizar el modelo bayesiano (Figura
Bh), (ii) el cdlculo de la distribucién predicitva (Barrera & Correa 2008) del nime-
ro de embriones normales obtenidos cuando n embriones son inyectados con una
dosis d fija (FiguraBb), (4) el cdlculo del nimero promedio de embriones normales
cuando n es fijo y se varfa d (FiguraBk) y (i) el nimero de embriones normales
cuando se varfan n y d simultdneamente (Figura Bd).
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Figura 3: (a) Andlisis de shrinkage para el nimero de embriones como funcidn
de la dosis de SIX3 mRNA. (b) distribucidn a posteriori del nimero de embriones
con el fenotipo cuando se inyectan 5 pg de SIX3 mRNA en un grupo de 39 embrio-
nes. En (c) y (d) se presentan el nimero promedio de embriones con el fenotipo
cuando se inyectan grupos de 30 embriones con diferentes dosis, y se varia el ta-
mano del grupo y la dosis inyectada, respectivamente. En (c) las lineas punteadas
representan el intervalo de confianza (CI) del 95%. Las flechas en (a) muestran
los experimentos en los que la distribucion a posteriori proporciona resultados sa-
tisfactorios. Fuente: elaboracion propia.

En el primer caso, el modelo bayesiano produce resultados satisfactorios para dosis
superiores 5 pg (FiguraBh) y relativamente buenos para dosis méds pequetias. Una
posible explicaciéon de este comportamiento estéd relacionado con la alta variabili-
dad en la proporcién de embriones normales (FiguraBh) y los tamafios de grupo.
El ajuste con el MLG (datos no presentados) es mds pobre, independiente de la
dosis (MSEpayesiano = 6.329 x 1073 vs. MSEypc = 6.691 x 1073). Por otro lado,
si se llevara a cabo un nuevo experimento con 39 embriones, una dosis d = 5 pg
producirfa P4 = 31 (95 %CI = 25-37) embriones normales (FiguraBb), es decir,
el 79.5% de estos. Observe que a pesar de que el tamafo de grupo es similar al
utilizado en el experimento real para la misma dosis (36 vs. 39 embriones), las
distribuciones a priori de o y 8, en combinacién con la verosimilitud de los da-
tos, producen una proporcién de embriones normales a posteriori ajustada (94.4 %
vs. 79.5%). Similarmente, nuevos experimentos con grupos de tamano n = 30 y
dosis d entre 5 pg y 20 pg (Figura Bb) sugieren que una dosis entre 12 pg y 15
pg seria suficiente para obtener embriones normales. Este resultado es consistente
con el obtenido cuando el tamano de los grupos y la dosis varian simultdneamente
(Figura[Bd).
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@ (b)

Densidad

Densidad

Figura 4: Distribucion a posteriori para (a) o, (b) B, (¢) p y (d) o cuando la
distribucién a priori es p(a, B) = (o, B)~5/2. Los pardmetros ju y o corresponden,
respectivamente, a la media y desviacion estandar de 0 en (8). Las lineas verticales
corresponden al intervalo de confianza del 95 %. Fuente: elaboracion propia.

3.2. Analisis de la mutacion 605C>T en SIX3

Dubourg et al. (2004) analizaron una cohorte de 200 pacientes con HPE y encon-
traron 7 nuevas mutaciones en el gen SIX3. Una de estas mutaciones es 605C>T,
ubicada en el dominio Six de la proteina SIX3, y que seleccionaremos para ilus-
trar nuestro modelo jerarquico Bayesiano (ver Figura[ll). Después de inyectar 114
embriones con una dosis de 50 pg de WT SIX3 mRNA en 4 experimentos inde-
pendientes, esta mutacién, también conocida como T202I (cambio de Treonina a
Isoleucina en la posicién 220 de la proteina SIX3) fue catalogada como LOF por
Domené et al. (2008). Los pares de embriones normales/inyectados fueron 39/40,
3/23,10/28 y 6/23, respectivamente.

El andlisis de convergencia para los muestreadores de Gibbs (Seccién 2.2) se
llevé a cabo utilizando la prueba de Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
(ver Kwiatkowski et al. 1992 y Barrera & Correa 2008 para mds informacién) im-
plementada en la libreria tseries (Trapletti & Hornik 2011) de R. Si la hipdtesis
nula es rechazada al utilizar la prueba KPSS, decimos que la cadena de Markov
no ha alcanzado la distribucién estacionaria (o simplemente no converge). Para
ambas distribuciones a priori solo el muestreador 2 convergid, es decir, el valor-p
de la prueba KPSS fue superior a un nivel de significancia o = 0.05. En la Figura
A se presentan, para p(a, ) = (o, 3)~°/2, las distribuciones a posteriori de oy f3,
asi como de i y o0, la media y desviacién estdndar de 6 en (g)), respectivamenteﬁ.

5Los resultados a posteriori para p(a, 8) o 1 se encuentran disponibles a peticién del lector.
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Dado que 6§ ~ Beta(a, B), p = a/(a+ B) y o = \/aB/{(a+ B)2(a+ B+ 1)}
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Figura 5: Andlisis de shrinkage para la proporcion de embriones con el fenotipo
cuando (a) p(a) o< 1y (b) p(e, B) = (a+B)~5/2. Las lineas horizontales correspon-
den a Pposterior = 0.503. Las flechas resaltan las diferencias entre los valores reales
de p y el valor a posteriori. Note que solo en (b) estas diferencias son despreciables.
Fuente: elaboracion propia.

Tabla 2: Medidas para las distribuciones a posteriori de o, B, p y o.
Pardmetro Media Mediana 95 %CI

o 0.676 0.542 (0.103, 2.053)
B 0.671 0.527 (0.108, 2.090)
" 0.503 0.503 (0.233, 0.769)
o 0.328 0.327 (0.215, 0.435)

Las medidas de resumen para las distribuciones a posteriori de a y 3 se presentan
en la TablaP (ver figurasidh y[db). De acuerdo con estas estimaciones, la proporcién
a posteriori de embriones con el fenotipo es p = 0.503 (95 %CI = 0.233-0.769); esta
estimacién es p = 0.508 (95 %CI = 0.414-0.603) utilizando la aproximacién basada
en la distribucién normal (Casella & Berger 2001). Estos resultados confirman que
esta mutacién es LOF, puesto que el nimero de embriones normales que se obtienen
corresponden a = 50 % del que se obtendria con el alelo de referencia. El andlisis
de shrinkage (ver Figura [) indica que con p(a, 8) = (a + )%/ la inferencia a
posteriori es mejor (MSEgayesiano = 2.089 X 107° vs. MSEyppg = 0.111).

4. Conclusiones

Se ha propuesto una metodologia bayesiana para la cuantificacion de la actividad
funcional de variantes genéticas en la que se maximiza la funcién de verosimilitud,
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utilizando una rejilla de biisqueda y se utilizan distribuciones no conjugadas como
distribuciones a priori. Como ilustracién, se construyé la curva dosis-respuesta
para el alelo de referencia del gen SIX3 y se cuantificé la actividad funcional de
la mutaciéon 605C>T en el mismo gen a partir de informacién proveniente de
experimentos con zebrafish, caracterizados por ser destructivos, costosos y generar
poca informacién.

Como se mostré durante la construccién de la curva dosis-respuesta y la cuanti-
ficacién de una de las mutaciones reportadas en Domené et al. (2008), el modelo
bayesiano produce mejores resultados que el MLG clédsido en términos del MSE,
especialmente cuando se tienen pocos experimentos (muy comun en biologia ex-
perimental y molecular). Otros aspectos importantes de esta metodologia que son
de gran utilidad y aplicacién en biologia molecular son: (7) la posibilidad que exis-
te de incluir informacion de expertos para determinar la distribucién a priori de
los pardmetros de interés (e.g., utilizacién de técnicas de elicitacién)(Garthwaite
et al. 2005) y (ii) que puedan realizarse inferencias probabilisticas acerca del verda-
dero valor de los pardmetros poblacionales o una funcién de estos (ver Garthwaite
et al. (2013) para una amplia discusién) como los presentados en las figuras B @y
En experimentos de este tipo, y en especial en campos de investigacion donde
generar datos es tan costoso, es fundamental disponer de metodologias de andlisis
con estas caracteristicas.

Posibles trabajos futuros incluyen la integracién del modelo bayesiano utilizado
para la construccién de la curva dosis-respuesta y el Modelo Jerarquico Bayesiano
implementado para la cuantificacién de experimentos independientes. De esta for-
ma, se incorporaria informacioén acerca del parametro de interés, e.g., proporcién
de embriones con el fenotipo, en la cuantificacién de la actividad funcional de una
variante genética o mutacion. La evaluacion de otras distribuciones a priori para
los parametros constituye un area de trabajo adicional.
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