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Resumen

En bioloǵıa molecular los estudios funcionales son útiles para la caracterización
de variantes o mutaciones en el genoma humano v́ıa experimentación con mode-
los animales (embriones de peces, por ejemplo). Estos experimentos consisten en
modificar genéticamente dichos embriones inyectándolos con moléculas de ácido
ribonucleico mensajero (mRNA, en inglés) y se caracterizan por ser destructivos,
tomar mucho tiempo y generar poca información. En este trabajo se propone e
ilustra, con datos reales, una metodoloǵıa para el análisis estad́ıstico de este tipo
de experimentos utilizando un enfoque bayesiano. Los resultados obtenidos con
esta metodoloǵıa concuerdan con lo observado a nivel molecular.

Palabras clave: genética, estudios funcionales, estad́ıstica bayesiana, modelos
jerárquicos, muestreador de Gibbs.

Abstract

In molecular biology, functional studies play an important role in the characteriza-
tion of variants or mutations in the human genome by experimenting with animal
models (e.g., fish embryos). These experiments, which consist in genetically mo-
difying the embryos by injecting mRNA, are characterized by being destructive,
time consuming and generate few information. We propose and illustrate, with
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real data, a bayesian methodology for the statistical analysis of such experiments.
This methodology provides comparable results to those observed at the molecular
level.

Key words: Genetics, Functional Studies, Bayesian Statistics, Hierarchical Mo-
dels, Gibbs Sampler.

1. Introducción

Una mutación se define, en términos generales, como un cambio repentino y es-
pontáneo en la secuencia del genoma de un organismo; en términos estad́ısticos,
esto es equivalente a eventos raros (Roessler et al. 2012). Por esta razón, la de-
terminación de si una mutación espećıfica tiene o no efecto en la secuencia del
genoma, altera el producto de un gen o interfiere en el funcionamiento de dicho
gen, es de gran interés. Aquellas mutaciones por las cuales el producto del gen
se hace menor o este tiene poca o ninguna función, son denominadas mutacio-
nes de pérdida de funcionalidad (LOF, por sus siglas en inglés); aquellas en las
que el producto del gen adquiere una nueva (pero anormal) función se denominan
mutaciones de ganancia de funcionalidad (GOF, por sus siglas en inglés).

Con el propósito de entender las bases genéticas y moleculares de las enfermedades,
y a su vez poder cuantificar la actividad funcional de las mutaciones de interés, una
de las aproximaciones más comunes en este tipo de experimentos es utilizar mode-
los animales, por ejemplo, peces zebra (o zebrafish en inglés). Entre las ventajas que
se obtienen al utilizar este modelo zebrafish como modelo animal se encuentran,
entre otras, su equivalencia taxonómica (Chakraborty et al. 2009) y la homoloǵıa
genética con los humanos (Kari et al. 2007). En este tipo de experimentos, la
determinación de si una mutación es LOF o GOF consiste, fundamentalmente,
en construir una curva dosis-respuesta y cuantificar la actividad funcional de las
variantes o mutaciones de interés (ampliado en las secciones 2.1 y 2.2).

Dentro del interés de los investigadores se encuentra determinar el número de em-
briones que tendrán determinada caracteŕıstica cuando se inyecta una dosis d∗ a
un grupo de n∗ embriones, y estimar la dosis d̃ a la que los embriones presentan
dicha caracteŕıstica en mayor proporción, por lo que, en ambos casos, la construc-
ción de un modelo estad́ıstico apropiado es fundamental. Sin embargo, por tratarse
de experimentos destructivos1, la cantidad de información que se genera es poca y
como consecuencia los métodos estad́ısticos tradicionales (revisados en Ritz 2010)
pueden dif́ıcilmente ser aplicados. Adicionalmente, puesto que la caracteŕıstica de
interés puede variar de un embrión a otro o entre grupos de embriones (variabi-
lidad intra e inter embrión), la incorporación de estas fuentes de variación en el
modelo final también es deseable. Infortunadamente, en este tipo de experimentos

1Aunque no todos los n embriones inyectados con una dosis d mueren, biológicamente este
experimento se considera destructivo, puesto que las inyecciones deben realizarse en un peŕıodo
de tiempo t espećıfico durante la etapa de desarrollo de los embrión y cualquier otra dosis x̃

adicional cambiaŕıa sus caracteŕısticas genéticas.
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la posibilidad de incluir estas fuentes de variación, utilizando métodos estad́ısticos
tradicionales, es remota y la necesidad de nuevas estrategias de análisis es evidente.

En este documento presentamos una metodoloǵıa bayesiana para el análisis es-
tad́ıstico de este tipo de experimentos, que constituye una alternativa viable y fácil
de implementar en cualquier programa de análisis estad́ıstico. Aunque la aplicación
de métodos bayesianos en genética no es nueva (Shoemaker & Painter 1999, Blan-
gero et al. 2005, Ding 2006, Stephens & Balding 2009, Yi et al. 2011, Innocenti
et al. 2011, Gompert & Buerkle 2011), la cuantificación de la actividad funcional
de variantes genéticas śı lo es. Como ilustración de esta metodoloǵıa, considera-
mos la construcción de una curva dosis-respuesta y la cuantificación de una de las
variantes genéticas presentadas en Domené et al. (2008), correspondientes a expe-
rimentos de rescate (rescue, por sus siglas en inglés) (Epstein & Shakes 1995, pp.
468-471) con grupos de embriones de zebrafish. La ventaja de esta metodoloǵıa,
como se mostrará más adelante, es que una vez se tienen las distribuciones conjun-
ta y marginales a posteriori la inferencia es directa (Gelman et al. 2004, Kerman
& Gelman 2006, Barrera & Correa 2008). Adicionalmente, los modelos bayesianos
permiten incluir información experimental previa y/o el conocimiento de un grupo
de expertos acerca de un parámetro de interés, utilizando técnicas de elicitación
(Garthwaite et al. 2005). En experimentos biológicos, este tipo de información es
muy valiosa.

2. Metodoloǵıa

2.1. Curva dosis-respuesta

Considere un estudio funcional cuyo objetivo es cuantificar la actividad de K mu-
taciones genéticas (por simplicidad, asumiremos K = 1). Adicionalmente, durante
la ejecución del estudio se realizan m (m > 1) experimentos independientes de
tipo binomial en los que la caracteŕıstica de interés (también llamada fenotipo)
es claramente diferenciable entre unidades muestrales (por ejemplo, embriones de
zebrafish). Si Yi es una variable aleatoria que representa el número de embriones
con el fenotipo cuando ni de ellos son inyectados con una dosis di de un compuesto
particular, entonces Yi ∼ Binomial(ni, θi), con θi ∈ (0, 1) el parámetro de la dis-
tribución (i = 1, 2, . . . ,m). La función de masa de probabilidad de Yi es (Casella
& Berger 2001):

p(Yi = yi | θi) =

(

ni

yi

)

θyi

i (1− θi)
ni−yi yi = 1, 2, . . . , ni, i = 1, 2, . . . ,m (1)

Puesto que en muchos casos dosis d altas producen una mayor cantidad de em-
briones con el fenotipo de interés, es natural pensar que existe una función g tal
que θ = g(d). Teniendo en cuenta la restricción de θ en el espacio parametral, la
función logit(θi) definida como:
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log

(

θi
1− θi

)

= α+ βdi i = 1, 2, . . . ,m (2)

constituye una buena elección.

La implementación de una estrategia bayesiana requiere la existencia de una fun-
ción de verosimilitud L y distribuciones a priori para los parámetros (Gelman
et al. 2004, Berger 2010). Al despejar θi de (2) y reemplazarlo en (1), el logaŕıtmo
de L para m experimentos está dado por:

l = logL(y1, y2, . . . , ym |α, β,d) ∝

m
∑

i=1

{

yi(α + β di)− ni log(1 + eα+β di)
}

(3)

Observe que en esta expresión todas las cantidades son conocidas excepto los
parámeros α y β que relacionan linealmente a θ con d.

En el caso de dos parámetros es posible utilizar una rejilla de búsqueda en el
rectángulo [a1, b1]× [a2, b2] sobre la cual se evalúa (3); este rectángulo constituye
las distribuciones a priori para α y β (Gelman et al. 2004, Kerman & Gelman
2006). La selección de los valores (ak, bk), k = 1, 2, puede llevarse a cabo a partir
de la información muestral, v́ıa experimentación o basado en información previa
(Gelman et al. 2004). Finalmente, la distribución conjunta a posteriori para (α, β)
se obtiene como:

p(α, β |Datos) ≈
c1

∑∑

c1
[a1,b1]×[a2,b2]

(4)

con c1 = el−máx{l}. Similarmente, las distribuciones marginales a posteriori son

p(α |Datos) ≈
p(α, β |Datos)

∑

[a2,b2]

p(α, β |Datos)
(5)

y

p(β |Datos) ≈
p(α, β |Datos)

∑

[a1,b1]

p(α, β |Datos)
(6)

Una vez se tienen las distribuciones conjuntas y marginales a posteriori, la inferen-
cia es directa (Gelman et al. 2004, Kerman & Gelman 2006, Barrera & Correa 2008)
y preguntas tales como (i) cuál es el número de embriones que tendrán el feno-
tipo cuando un grupo de n∗ embriones se inyecta una dosis d∗ y (ii) cuál es la
dosis d̃ a la que los embriones presentan el fenotipo en mayor proporción, pueden
responderse fácilmente (ver Sección 3.1).
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2.2. Actividad funcional de una variante genética

Como se mencionó en la sección anterior, uno de los objetivos del análisis de
curvas dosis-respuesta es la determinación de la dosis d̃ que genera el fenotipo
de interés en mayor proporción. Consideremos ahora un conjunto de m (m >
1) experimentos similares a los de la sección 2.1, pero en los que grupos de ni

embriones (i = 1, 2, . . . ,m) son ahora inyectados con un compuesto diferente y se
utiliza una dosis d̃ fija.

Figura 1: Estructura del modelo jerárquico propuesto para el análisis bayesiano
de la actividad funcional de una mutación. En el primer nivel, combinaciones de
los hiperparámetros (α, β) generan el parámetro θi, responsable de la aparición
del fenotipo de interés en yj embriones de un grupo de ni embriones que fueron
inyectados (i = 1, 2, . . . ,m). Fuente: elaboracion propia.

Si Yi es el número de embriones inyectados que presentan el nuevo fenotipo y ni (fi-
jo) es el número total de embriones inyectados, entonces Yi | θi ∼ Binomial(ni, θi),
con 0 < θi < 1, i = 1, 2, . . . ,m. Por tratarse de una proporción, es razonable
pensar que θi |α, β ∼ Beta(α, β), con α, β > 0 los hiperparámetros del modelo; la
distribución conjunta de estos es p(α, β). De esta forma se tiene entonces que el
vector de observaciones y = (y1, y2, . . . , ym) puede ser visto como una realización
de una estructura jerárquica (vea Figura 1). Comparado con los métodos tradi-
cionales (vea Ritz (2010)), este modelo jerárquico permite considerar la variación
que existe de un embrión a otro y/o entre grupos de embriones (variabilidad intra
e inter embrión) y no requiere grandes tamaños de muestra.

La distribución a posteriori del modelo completo está dada por:

p(φ, θ |y) ∝ p(φ) p(θ|φ) p(y|θ)

= p(φ)
m
∏

i=1

Γ(α+ β)

Γ(α)Γ(β)
θα−1
i (1 − θj)

β−1
m
∏

i=1

(

ni

yi

)

θyi

i (1− θi)
ni−yi

= p(φ)

m
∏

i=1

Beta(θi|φ) Binomial(yi|ni, θi) (7)

donde φ = (α, β) es el vector de hiperparámetros y θ = (θ1, θ2, . . . , θm) es el vector
de parámetros.
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El muestreador de Gibbs (ver Casella & George (1992) para una introducción)
hace parte de los algoŕıtmos iterativos basados en cadenas de Markov (también
denominadas Markov chain Monte Carlo, o MCMC) que permiten obtener mues-
tras de la distribución a posteriori de un vector de parámetros Θ de dimensión
p cuando esta no tiene forma conocida o p → ∞ (Gelman et al. 2004, Barrera &
Correa 2008). Espećıficamente, el muestreador de Gibbs se utiliza cuando la dis-
tribución conjunta de Θ es desconocida pero la distribución condicional de Θj es
conocida (j = 1, 2, . . . , p). Si definimos Θt−1

−j = (Θt−1
1 ,Θt−1

2 , . . . ,Θt−1
j+1, . . . ,Θ

t−1
p )

entonces, en la iteración t del algoŕıtmo, Θt
j ∼ p(Θj |Θ

t−1
−j , Datos), de tal forma

que el muestreo de la distribución a posteriori es inmediato toda vez que se tengan
valores iniciales para Θ (Gelman et al. 2004, Sección 11.2). Dadas las caracteŕısti-
cas de (7), utilizaremos el muestreador de Gibbs para obtener muestras aleatorias
de esta distribución.

Las distribuciones a posteriori condicionales de (7) son

p(θi|φ,y) ∝ θα−1
i (1− θi)

β−1θyi

i (1 − θi)
ni−yi

= Beta(α+ yi, ni + β − yi) (8)

y
p(φ | θ,y) ∝ p(φ)

m
∏

i=1

Beta(θi|α, β) (9)

Observe que las distribuciones (7) y (9) están en función de p(φ) = p(α, β) y
que a pesar de la estructura jerárquica del modelo, la distribución p(θi|φ,y) tiene
una forma (cerrada) conocida. En la práctica, esto último facilita enormemente la
generación de muestras para θi (i = 1, 2, . . . ,m).

Teóricamente es posible utilizar diferentes distribuciones a priori para p(φ) que
reflejen nuestro conocimiento del experimento (Berger 2010, Caṕıtulo 3); la se-
lección de cuál de estas distribuciones es la más adecuada es motivo de extensa
investigación (Kass & Wasserman 1996, Casella & Berger 2001, Gelman et al.
2004, Berger 2010). En nuestro caso, las distribuciones a priori utilizadas para
p(φ) fueron p(φ) ∝ (α+ β)−5/2 y p(α, β) ∝ 1, esta última también conocida como
la distribución a priori no informativa de Laplace. Sin embargo, la metodoloǵıa
aqúı presentada no se limita a la escogencia de estas distribuciones a priori. Obser-
ve que α > 0 y β > 0 puesto que corresponden a los parámetros de una distribución
Beta.

Para la generación de muestras de la distribución a posteriori de p(φ) se definieron
tres muestreadores de Gibbs con B = 10000 iteraciones2. En el primero, para la
iteración t, φ(t) ∼ N2

(

φ(t−1),Σφ

)

; en el segundo, logφ(t) ∼ N2

(

φ(t−1),Σφ

)

y en

el tercero, logφ(t) ∼ N2

(

φ(t−1),Σφ

)

(t = 1, 2, . . . , B). La matriz de varianzas-
covarianzas utilizada fue:

Σφ =

(

σα σα,β

σα,β σβ

)

2Dada la complejidad de las distribuciones a posteriori conjuntas y marginales, el muestreador
de Gibbs se utilizó en conjunto con rejection sampling.
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con (σα, σα,β , σβ) = (2, 0, 2) para el primer muestreador, (3, 0, 3) para el segundo
y (2, 1/3, 3) para el tercero. El vector de valores iniciales fue, en todos los casos,
φ(0) = (1, 1). La implementación de estos muestreadores en R (R. Core Team 2013)
se encuentra disponible a petición del lector.

3. Aplicación

3.1. Curva dosis-respuesta

Como ilustración, se seleccionaron 5 experimentos tipo rescue en zebrafish en el
que se inyectaron un total de 114 embriones con 1 ng de Hdl MO3 y diferentes dosis
de mRNA del alelo de referencia (wild-type o WT, en inglés) del gen Sine oculis
homeobox homolog 3 (SIX3 ). Este gen está ubicado en el cromosoma 2p21 y tiene
una longitud de 999 pares de bases (Roessler et al. 2012); mutaciones en este gen
han sido asociadas holoprosencefalia (HPE en inglés) (Wallis et al. 1999, Dubourg
et al. 2004)4. Las duplas dosis/tamaño de grupo consideradas por experimento
fueron 2.5/38, 5/36, 10/33, 25/5 y 50/2 y el fenotipo de interés correspondió a
la presencia de ambos ojos en el embrión (obtener un embrión normal). En la
Figura 2a se presenta la curva dosis-respuesta obtenida. Note que mientras en
el grupo de 38 embriones la mitad de ellos son normales, la proporción aumenta
considerablemente cuando se inyecta una dosis de 50 pg.

La región de evaluación de (4) se definió como [−2, 2]×[0, 1] gracias a experimentos
previos que indicaban que a mayores dosis la proporción de embriones normales
era mayor. En las figuras 2b y 2c presentamos la distribución conjunta a posteriori
para α y β y sus contornos de probabilidad constante, respectivamente. Llama
la atención que sin haber definido una estructura de correlación para α y β, los
contornos de la distribución conjunta a posteriori indiquen que esta existe (ρ̂ =
−0.884, valor-p < 10−10).

Tabla 1: Medidas para las distribuciones a posteriori de α y β en (2). Fuente:
elaboracion propia.

Parámetro Moda Media Mediana Desviación Estándar 95%CI
α -0.636 -0.655 -0.636 0.543 (-1.773, 0.227)
β 0.393 0.414 0.404 0.124 (0.192, 0.636)

3Hdl se refiere al gen headless (o simplemente hdl) en zebrafish. MO corresponde a morpholino

oligonucleotide, moléculas utilizadas para modificar la expresión de un gen. Embriones inyectados
solo con Hdl MO sufren alteraciones que dificultan el desarollo de los ojos y otras estructuras a
nivel anterior. La coinyección de Hdl MO y WT SIX3 en zebrafish permite rescatar los embriones,
es decir, obtener embriones normales (Domené et al. 2008).

4Para mayor información se sugiere consultar el número especial del American Journal of

Medical Genetics en http://bit.ly/zVjwQL.
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Figura 2: (a) Curva dosis-respuesta en Domené et al. 2008; (b) distribución a
posteriori para (α, β); (c) contornos de (b). Distribuciones a posteriori de (d) α
y (e) β. En (a) el eje y representa la proporción de embriones normales; en (c)

la intersección de las ĺıneas punteadas corresponden α̂MLE y β̂MLE. La medida pg
corresponde a 10−12 g. Fuente: elaboracion propia.

Las medidas de resumen para las distribuciones a posteriori de α y β se presen-
tan en la Tabla 1 (vea figuras 2d y 2e). Nuestros resultados indican que por cada
unidad que se incremente la dosis de WT SIX3 mRNA, el odds de que el embrión
sea normal incrementa de 1 a e0.414 = 1.513 (95%CI = 1.211–1.967). Comparati-
vamente, los estimadores de máxima verosimilitud (MLE) para α y β utilizando
un modelo lineal generalizado (MLG, datos no presentados) son, respectivamen-

te, α̂MLE = −0.582 y β̂MLE = 0.386 (ver Figura 2c); el odds incrementa de 1 a
e0.386 = 1.471 (95%CI = 1.161–1.866).

A partir de las distribuciones a posteriori conjunta y marginales, se realizaron
algunos análisis adicionales que incluyeron (i) la comparación del número de em-
briones normales reales con los predichos al utilizar el modelo bayesiano (Figura
3a), (ii) el cálculo de la distribución predicitva (Barrera & Correa 2008) del núme-
ro de embriones normales obtenidos cuando n embriones son inyectados con una
dosis d fija (Figura 3b), (iii) el cálculo del número promedio de embriones normales
cuando n es fijo y se vaŕıa d (Figura 3c) y (iv) el número de embriones normales
cuando se vaŕıan n y d simultáneamente (Figura 3d).
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Figura 3: (a) Análisis de shrinkage para el número de embriones como función
de la dosis de SIX3 mRNA. (b) distribución a posteriori del número de embriones
con el fenotipo cuando se inyectan 5 pg de SIX3 mRNA en un grupo de 39 embrio-
nes. En (c) y (d) se presentan el número promedio de embriones con el fenotipo
cuando se inyectan grupos de 30 embriones con diferentes dosis, y se vaŕıa el ta-
maño del grupo y la dosis inyectada, respectivamente. En (c) las ĺıneas punteadas
representan el intervalo de confianza (CI) del 95%. Las flechas en (a) muestran
los experimentos en los que la distribución a posteriori proporciona resultados sa-
tisfactorios. Fuente: elaboracion propia.

En el primer caso, el modelo bayesiano produce resultados satisfactorios para dosis
superiores 5 pg (Figura 3a) y relativamente buenos para dosis más pequeñas. Una
posible explicación de este comportamiento está relacionado con la alta variabili-
dad en la proporción de embriones normales (Figura 3a) y los tamaños de grupo.
El ajuste con el MLG (datos no presentados) es más pobre, independiente de la
dosis (MSEBayesiano = 6.329× 10−3 vs. MSEMLG = 6.691× 10−3). Por otro lado,
si se llevara a cabo un nuevo experimento con 39 embriones, una dosis d = 5 pg
produciŕıa ŷpred = 31 (95%CI = 25–37) embriones normales (Figura 3b), es decir,
el 79.5% de estos. Observe que a pesar de que el tamaño de grupo es similar al
utilizado en el experimento real para la misma dosis (36 vs. 39 embriones), las
distribuciones a priori de α y β, en combinación con la verosimilitud de los da-
tos, producen una proporción de embriones normales a posteriori ajustada (94.4%
vs. 79.5%). Similarmente, nuevos experimentos con grupos de tamaño n = 30 y
dosis d entre 5 pg y 20 pg (Figura 3b) sugieren que una dosis entre 12 pg y 15
pg seŕıa suficiente para obtener embriones normales. Este resultado es consistente
con el obtenido cuando el tamaño de los grupos y la dosis vaŕıan simultáneamente
(Figura 3d).

Comunicaciones en Estad́ıstica, junio 2013, Vol. 6, No. 1
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Figura 4: Distribución a posteriori para (a) α, (b) β, (c) µ y (d) σ cuando la
distribución a priori es p(α, β) = (α, β)−5/2. Los parámetros µ y σ corresponden,
respectivamente, a la media y desviación estándar de θ en (8). Las ĺıneas verticales
corresponden al intervalo de confianza del 95%. Fuente: elaboracion propia.

3.2. Análisis de la mutación 605C>T en SIX3

Dubourg et al. (2004) analizaron una cohorte de 200 pacientes con HPE y encon-
traron 7 nuevas mutaciones en el gen SIX3. Una de estas mutaciones es 605C>T,
ubicada en el dominio Six de la proteina SIX3, y que seleccionaremos para ilus-
trar nuestro modelo jerárquico Bayesiano (ver Figura 1). Después de inyectar 114
embriones con una dosis de 50 pg de WT SIX3 mRNA en 4 experimentos inde-
pendientes, esta mutación, también conocida como T202I (cambio de Treonina a
Isoleucina en la posición 220 de la protéına SIX3) fue catalogada como LOF por
Domené et al. (2008). Los pares de embriones normales/inyectados fueron 39/40,
3/23, 10/28 y 6/23, respectivamente.

El análisis de convergencia para los muestreadores de Gibbs (Sección 2.2) se
llevó a cabo utilizando la prueba de Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
(ver Kwiatkowski et al. 1992 y Barrera & Correa 2008 para más información) im-
plementada en la libreŕıa tseries (Trapletti & Hornik 2011) de R. Si la hipótesis
nula es rechazada al utilizar la prueba KPSS, decimos que la cadena de Markov
no ha alcanzado la distribución estacionaria (o simplemente no converge). Para
ambas distribuciones a priori solo el muestreador 2 convergió, es decir, el valor-p
de la prueba KPSS fue superior a un nivel de significancia α = 0.05. En la Figura
4 se presentan, para p(α, β) = (α, β)−5/2, las distribuciones a posteriori de α y β,
aśı como de µ y σ, la media y desviación estándar de θ en (8), respectivamente5.

5Los resultados a posteriori para p(α, β) ∝ 1 se encuentran disponibles a petición del lector.
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Dado que θ ∼ Beta(α, β), µ = α/(α+ β) y σ =
√

αβ/{(α+ β)2(α+ β + 1)}.

Figura 5: Análisis de shrinkage para la proporción de embriones con el fenotipo
cuando (a) p(α) ∝ 1 y (b) p(α, β) = (α+β)−5/2. Las ĺıneas horizontales correspon-
den a p̂posterior = 0.503. Las flechas resaltan las diferencias entre los valores reales
de p y el valor a posteriori. Note que solo en (b) estas diferencias son despreciables.
Fuente: elaboración propia.

Tabla 2: Medidas para las distribuciones a posteriori de α, β, µ y σ.
Parámetro Media Mediana 95%CI

α 0.676 0.542 (0.103, 2.053)
β 0.671 0.527 (0.108, 2.090)
µ 0.503 0.503 (0.233, 0.769)
σ 0.328 0.327 (0.215, 0.435)

Las medidas de resumen para las distribuciones a posteriori de α y β se presentan
en la Tabla 2 (ver figuras 4a y 4b). De acuerdo con estas estimaciones, la proporción
a posteriori de embriones con el fenotipo es p̂ = 0.503 (95%CI = 0.233–0.769); esta
estimación es p̂ = 0.508 (95%CI = 0.414–0.603) utilizando la aproximación basada
en la distribución normal (Casella & Berger 2001). Estos resultados confirman que
esta mutación es LOF, puesto que el número de embriones normales que se obtienen
corresponden a ≈ 50% del que se obtendŕıa con el alelo de referencia. El análisis
de shrinkage (ver Figura 5) indica que con p(α, β) = (α + β)−5/2 la inferencia a
posteriori es mejor (MSEBayesiano = 2.089× 10−5 vs. MSEMLG = 0.111).

4. Conclusiones

Se ha propuesto una metodoloǵıa bayesiana para la cuantificación de la actividad
funcional de variantes genéticas en la que se maximiza la función de verosimilitud,
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utilizando una rejilla de búsqueda y se utilizan distribuciones no conjugadas como
distribuciones a priori. Como ilustración, se construyó la curva dosis-respuesta
para el alelo de referencia del gen SIX3 y se cuantificó la actividad funcional de
la mutación 605C>T en el mismo gen a partir de información proveniente de
experimentos con zebrafish, caracterizados por ser destructivos, costosos y generar
poca información.

Como se mostró durante la construcción de la curva dosis-respuesta y la cuanti-
ficación de una de las mutaciones reportadas en Domené et al. (2008), el modelo
bayesiano produce mejores resultados que el MLG clásido en términos del MSE,
especialmente cuando se tienen pocos experimentos (muy común en bioloǵıa ex-
perimental y molecular). Otros aspectos importantes de esta metodoloǵıa que son
de gran utilidad y aplicación en bioloǵıa molecular son: (i) la posibilidad que exis-
te de incluir información de expertos para determinar la distribución a priori de
los parámetros de interés (e.g., utilización de técnicas de elicitación)(Garthwaite
et al. 2005) y (ii) que puedan realizarse inferencias probabiĺısticas acerca del verda-
dero valor de los parámetros poblacionales o una función de estos (ver Garthwaite
et al. (2013) para una amplia discusión) como los presentados en las figuras 3, 4 y
5. En experimentos de este tipo, y en especial en campos de investigación donde
generar datos es tan costoso, es fundamental disponer de metodoloǵıas de análisis
con estas caracteŕısticas.

Posibles trabajos futuros incluyen la integración del modelo bayesiano utilizado
para la construcción de la curva dosis-respuesta y el Modelo Jerárquico Bayesiano
implementado para la cuantificación de experimentos independientes. De esta for-
ma, se incorporaŕıa información acerca del parámetro de interés, e.g., proporción
de embriones con el fenotipo, en la cuantificación de la actividad funcional de una
variante genética o mutación. La evaluación de otras distribuciones a priori para
los parámetros constituye un área de trabajo adicional.
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