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Abstract

The estimation of a finite population is a very relevant topic in the context of
education assessment. However, in the statistical literature, there is no available a
generalized methodology that allows computing the minimum sample size needed
to guarantee accurate variance estimates. This paper provides the approximation
for the Hájek estimator of the population variance using Taylor linearization. We
also find proper expressions for the computation of the minimum sample size re-
quired to pointly estimate this parameter of interest along with testing statistical
hypothesis. Besides that, we present some computational functions programmed
in the R software to easily compute proper sample sizes.

Keywords: sample size, survey sampling, standardized tests, population vari-
ance.

Resumen

Estimar la varianza del puntaje de una población finita en un examen estandarizado
es un objetivo importante en la evaluación de la educación; sin embargo en la
literatura estad́ıstica no existe una metodoloǵıa general que permita determinar
el tamaño de muestra mı́nimo necesario para estimar de forma consistente este
parámetro de interés. En este art́ıculo se realizan los desarrollos necesarios para
aproximar la varianza del estimador de Hájek de la varianza poblacional por medio
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de la linealización de Taylor. Además, se proponen diferentes enfoques para cal-
cular el tamaño de muestra mı́nimo necesario para estimar puntualmente este
parámetro o para cotejar un sistema de hipótesis estad́ısticas. Adicionalmete se
proponen funciones computacionales programadas en el software R que permiten
calcular tamaños de muestra requeridos.

Palabras clave: tamaño de muestra, muestreo, pruebas estandarizadas, varianza
poblacional.

1 Introduction

The standardized test is a tool to measure the quality of education that use an
instrument or questionnaire with a finite amount of items. The psychometric
theory has shown that a construct is measured more accurately as the instrument
contains more items. Of course, in real applications, the student that presents a
standardized test is subject to a limited time to answer the items. This makes it
necessary to optimize the amount of items applied in each test.

Because the number of items in a test is limited, any standardized test will be
subject to a measurement error, which will decrease as the number of items in the
test increases. Therefore, any result that emerges from the examination will be
associated with a statistical error that allows an appropriate inference regarding
the skills of the examinees.

From the aggregation of results several measures of great importance for assessing
the quality of education to establish improvement plans of the different entities
involved are generated. Thus, for each application distribution with all individual
results are obtained. Some parameters of interest are: median, variance, coefficient
variation, among others.

When the application is made as a census, the parameters of interest are calculated
based on the individual results of the whole population. This calculation responds
to particular mathematical expressions. When the test is done on a random prob-
ability sample, the parameters of interest must be estimated taking into account
the probability measure induced by the sampling design. It is common that the
sampling design is planned so that it decreases the error margin of the estimate
of the population median. However, in addition to estime the median, it is also
necessary to estimate other parameters of interest; especially variance.

The variance of the results of a test is a measure of great importance in the
standardized assessment since it allows to identify the dispersion of scores and
make analysis to identify how far of the average is the score of a particular student,
as well as how far of a population subgroup of interest. This parameter is defined
as:

s2yU =
1

N − 1

∑
u

(yk − ȳU )2 (1)
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Where yk represents the variable of interest measured over individual k (or the
score obtained by the student k in a standardized test), U denotes the finite
population of size N and ȳU =

∑
U yk/N . If probability sample S is selected from

U according to a sampling design p(·), then assuming that the sampling design
that allowed the sample selection was simple random without replacement, the
population variance can be estimated as:

s2ys =
1

n− 1

∑
s

(yk − ȳs)2

Where ȳs =
∑
s yk/n. Särndal et al. (1992, pg.188) claim that the next estimator

is consistent for s2yU under any sampling design p(·) that introduce an inclusion
probability πk for the k-simal element:

s̃2yy =
1

N̂ − 1

∑
s

(yk − ỹs)2

πk
(2)

Besides note that N̂ =
∑
s 1/πk and ỹs is the estimator of Hájek for a population

median defined as ỹs = (
∑
s yk/πk)/N̂ . As is well known this estimator is asymp-

totically unbiased; i.e., its bias tends to zero as the size of the population N with
the sample size n tend to be large. Thereafter, the estimator defined by (2) will
be noticed as the estimator of Hájek for population variance.

On the other hand, to know the accuracy of the estimate, it is necessary to identify
the variance of these estimators. Knowing this expression makes possible to quan-
tify the variation coefficient of the point estimate (as well as the margin of error),
build appropriate confidence intervals and calculate the power of a hypothesis test.
Note that the above elements provide the researcher a methodological strategy to
find appropriate expressions with the aim of calculating the sample sizes needed
to meet the purposes of statistical research in the educational context. The first
references to this issue correspond to Cochran (1977). On the other hand, Cho
(2004) finds appropriate expressions for the variance of an estimator of the vari-
ance in terms of the fourth theoretical moment (though he doesn’t address the
problem of estimating the variance of a finite population). Then Ardilly & Tillé
(2006) develop appropriate expressions for finite populations on the assumption
that the variable of interest has a normal distribution.

After a short introduction, in Section 2 we develop the theoretical component of
the variance information of s̃2yy. In Section 3 we present the necessary mathe-
matical calculations to compute minimum sampling sizes needed to obtain point
estimates with values that are lower to a predefined variation coefficient and a
predefined margin of error. In section 4, for the scenario of hypothesis samples
is also the minimum sample size to met with a level of predefined power. In sec-
tion 5 it’s briefly described the built functions in the software R implementing the
methodological developments of this research and they are incorporated in the
samplesize4surveys package (Gutiérrez 2015). In section 6 this methodology is
applied to the data of the test Saber 11 (ICFES 2016)). Finally, in section 6 some
conclusions and recommendations are given.
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2 Approximate variance of the Hájek estimator

Under some plausible statistical conditions in any research of the evaluation of
education, the next result provides the information for the variance of s̃2yy.

Result 1. Assuming that both N and n are large enough and that the selection
of the sample is induced by a simple random sampling design, the variance of s̃2yy
can be approximated :

var(s̃2yy) ≈ N2(NK + 2N + 2)

n(N − 1)3

(
1− n

N

)
s4yU (3)

Where K denotes the coefficient of kurtosis1 dof the variable of interest in the
finite population defined as:

K =
1
N

∑
U (yk − ȳU )4(

1
N

∑
U (yk − ȳU )2

)2 − 3

Proof. First, we note that the estimator s̃2yy can be viewed as a function of two

estimators of totals: the first, the estimate of the population size N̂ and the second,
a population estimate of the sum of squares over the differences of each score with

the estimate of average t̂ =
∑
s

(yk − ỹs)2

πk
.

By using the Taylor linearization technique (Gutiérrez 2009, sección 8.1.) of first
order around the values N̂ = N =

∑
U 1 y t̂ = t =

∑
U (yk − ȳU )2, we have that

the partial derivatives of s̃2yy = f(N̂ , t̂) with respect to each estimated total are:

a1 =
∂s̃2yy

∂N̂

∣∣∣∣∣
N̂=N, t̂=t

= − t̂

(N̂ − 1)2

∣∣∣∣∣
N̂=N, t̂=t

= −
∑
U (yk − ȳU )2

(N − 1)2
= −

s2yU
N − 1

a2 =
∂s̃2yy

∂t̂

∣∣∣∣∣
N̂=N, t̂=t

=
1

(N̂ − 1)2

∣∣∣∣∣
N̂=N, t̂=t

= − 1

(N − 1)2

Then, when applying the theorem of Taylor to linearize the estimator s̃2yy, we have
that

s̃2yy = f(N̂ , t̂) ≈ s2yU + a1(N̂ −N) + a2(t̂− t) (4)

Therefore, it is possible to define a new variable linearized as:

Ek = a1(1) + a2(yk − ȳU )2 =
1

N − 1
[(yk − ȳU )2 − s2yU ]

1Note that when y has a perfectly symmetric distribution K = 0.
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LThis leads to an appropriate expression to approximate the variance of that s̃2yy
is given by:

var(s̃2yy) ≈ var

(∑
s

Ek
πk

)
=
∑
k∈U

∑
l∈U

∆kl

πkl

Ek
πk

El
πl

(5)

With ∆kl = πkl−πkπl y πkl defined as the probability of inclusion of second order.
Particularly, if the sampling design used is simple random without replacement,
the variance information is given by:

var(s̃2yy) ≈ N2

n

(
1− n

N

)
s2EU

(6)

Where:

S2
EU

=
1

N − 1

∑
U

E2
k

=
1

N − 1

∑
U

[(yk − ȳU )2 − s2yU ]2

(N − 1)2

=
1

(N − 1)3

∑
U

[
(yk − ȳU )4 − 2s2yU (yk − ȳU )2 + s4yU

]
=

1

(N − 1)3

[
N
∑
U

(yk − ȳU )4 − (N − 2)s4yU

]

Where
∑
U (yk− ȳU )4 is the forth central moment of the variable y and in the finite

population y s4yU = (s2yU )2. Now, after a little of algebra about (6), it’s possible
to find that:

var(s̃2yy) ≈ N2

n(N − 1)3

(
1− n

N

)[
N
∑
U

(yk − ȳU )4 − (N − 2)s4yU

]

On the other hand, the coefficient of kurtosis of the variable of interest in the finite

population is defined as K =

∑
U (yk − ȳU )4

s4yU
− 3, from where

∑
U (yk − ȳU )4 =

(K + 3)s4yU , and therefore we have the following information for the variance of
s̃2yy.

var(s̃2yy) ≈ N2(NK + 2N + 2)

n(N − 1)3

(
1− n

N

)
s4yU

Note that if the distribution of individual scores is symmetric in the finite popu-
lation, then K = 0, and therefore the information of the variance would be deter-
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mined by the following expression:

var(s̃2yy) ≈ 2N2(N + 1)

n(N − 1)3

(
1− n

N

)
s4yU (7)

2.1 Empirical verification of the information

In order to illustrate the behavior of the information previously found, two ex-
ercises of simulation were made. In each of them, a population of size N =
100.000 For each finite population random samples without replacement of size
n = 100, 110, · · · , 1000 were selected. For each value of n, the information given
in 3 was calculated and besides 1000 samples of the finite population were chosen
following a simple random sampling design without replacement. For each selected
sample the estimator of variance given in (2) was calculated. The variance was
calculated for this set of 1000 estimates and this cipher was compared to (3).

The first exercise was made with a finite population induced by N realizations
of a normal distribution with media 50 and standard deviation 10 that induces a
coefficient of kurtosis K = 0. Results of simulation are shown in figure 1, where we
can see that the information is correct. In the second exercise, the population was
simulated from a gamma distribution with expectation equal to 200 and standard
deviation equal to 140, in which case the coefficient of kurtosis is K = 3. Results
of this second exercise are shown in figure 2; we can see that in general, the
information is acceptable, although apparently it tends to slightly overestimate
the variance of s̃2yy.

3 Sample size for point estimation of the variance

With the developments found in the previous section it’s possible to define ap-
propriate expressions to calculate the minimum sample size needed to estimate
the variance of a variable of interest over a finite population, subject to some re-
strictions like margin of absolute error, relative margin of error or coefficient of
variation. In principle, appropriate expressions subject to a sampling strategy that
relies on a simple random design without replacement and the estimator s̃2yy are
developed. Then, these expressions are generalized to be used under any arbitrary
sampling design.

It is important to note that when the sample design p(·) is different from simple
random sampling is not possible to give a general expression (allowing to clear
n) for the variance of s2ys. However, it is possible to use the DEFF design effect,
which is defined as:

DEFF =
varp(s

2
ys)

varMAS(s̃2yy)

Note that the DEFF is defined in terms of design p(·) and the estimator s2ys.
Following expression is useful to generalize the variance of the estimator s̃2yy under
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Figure 1: Variance of estimator s̃2yy (continuous line) and the approximation given
in the result 1(dotted line)in a simulated population of a normal distribution with
K=0. Source: own elaboration.

any design p(·) in terms of the simple random sampling design.

varp(s
2
ys) = DEFF × varMAS(s̃2yy)

Where varMAS(s̃2yy) is defined in result 1. This technique is well known in the
calculation of sample sizes when sampling design is complex. Of course, if the value
of DEFF is less than 1, then the estimator variance under that particular sampling
design is low, and therefore it is expected a smaller sample size. Conversely, if the
value of DEFF is greater than 1, then the variance of the estimator under that
particular sampling design is increased, and a larger sample size would be expected.
Finally, the results presented in this article are based on the assumption that the
estimator of Hájek for the variance has asymptotic normal distribution; it is,

s̃2yy − s2yU√
var(s̃2yy)

∼ N(0, 1)

This assumption is supported in detail Sen (1995) in an essay on the properties of
the estimator Hájek and its contributions to the central theorem of limit in finite
populations. However, it must be noted that for sampling designs that induce
an effective random sample size, this assumption of normality begins to be quite
weak.
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Figure 2: Variance of estimator s̃2yy (continuous line) and the approximation given
in the result 1(dotted line) in a simulated population of a gamma distribution with
K=3. Source: own elaboration.

3.1 Minimizing the margin of absolute error

The margin of absolute error is defined from the distribution of probability of the
estimator of interest. In this particular case it’s assumed that the Hájek estimator
for variance s̃2yy follows a normal asymptotic distribution with median s2yU and
variance var(s̃2yy). Then it’s possible to find an interval of confidence of level
(1− α/2) based on the following expression:

1− α ≤ P
(∣∣s̃2yy − s2yU ∣∣ < MEA

)
(8)

Therefore, it is to find the minimum sample size n necessary to accurately esti-
mate the population variance s2yU that a margin of absolute error MEA is fixed
beforehand, restricted to the following expression:

1− α ≤ P

∣∣∣∣∣∣ s̃
2
yy − s2yU√
var(s̃2yy)

∣∣∣∣∣∣ < MEA√
var(s̃2yy)


Assuming normality, we have that:

MEA√
var(s̃2yy)

≥ z1−α/2 ⇒ var(s̃2yy) ≤ MEA2

z21−α/2
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Retaking the information of var(s̃2yy) in (3) and then a little of algebra, we fi-
nally obtain the following expression that let us obtain a minimum sample size
to estimate the parameter of interest with a relative margin of error lower than
MEA when the sampling design is random without replacement and when the used
estimator is s̃2yy.

n ≥

z21−α/2s
4
yU

MEA2

(N − 1)3

N2(NK + 2N + 2)
+
z21−α/2s

4
yU

MEA2N

(9)

If sampling design is different to the random simple without replacement, then
we have the following condition for the sampling size in terms of the margin of
absolute error:

n ≥

z21−α/2s
4
yU ×DEFF
MEA2

(N − 1)3

N2(NK + 2N + 2)
+
z21−α/2s

4
yU ×DEFF

N ×MEA2

(10)

Finally to quantify the margin of absolute error fixing a preset sample size is also
useful. Note that the following expression is useful to estimate the levels of an
interval of confidence over s2yU .

MEA = z1−α/2

√
var(s̃2yy)

= z1−α/2s
2
yU

N

N − 1

√
NK + 2N + 2

n(N − 1)

(
1− n

N

)
(11)

It’s clear that is impossible to do this calculation because it would be necessary to
know the value of s2yU . In this case it’s possible to estimate the margin of absolute
error replacing the previous expression with s̃2yy.

3.2 Minimizing the relative margin of error

On the other hand, the previous development can also be formuled in terms of the
relative margin of error (MER), in this case the equation turns into:

1− α ≥ P

(∣∣∣∣∣ s̃2yy − s2yUs2yU

∣∣∣∣∣ < MER

)
= P

(∣∣s̃2yy − s2yU ∣∣ < MER× s2yU
)

(12)

From where it can be concluded that MER × s2yU = MEA. Following the same
logic and after a little of algebra, we can easily conclude that the expression of n
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given in (9) turns into:

n ≥

z21−α/2

MER2

(N − 1)3

N2(NK + 2N + 2)
+

z21−α/2

N ×MER2

(13)

If sampling design differs from the simple random without replacement, then the
following expression explains the appropriate sampling size when minimizing the
relative margin of error:

n ≥

z21−α/2 ×DEFF
MER2

(N − 1)3

N2(NK + 2N + 2)
+
z21−α/2 ×DEFF
N ×MER2

(14)

The relative margin of error (fixing a preset simple size) is given by the following
expression:

MER = z1−α/2
N

N − 1

√
NK + 2N + 2

n(N − 1)

(
1− n

N

)
(15)

Note that in this case this calculation is completely feasible since this expression
doesn’t depend on the parameter to be estimated.

3.3 Minimizing the estimated coefficient of variation

If the requirement about the sample size falls on achieving a coefficient of variation
(CVE) less than a predefined threshold, then it is necessary to perform a simple
algebraic development that begins by properly define this term:

CV E =

√
var(s̃2yy)

s2yU

=

√(
1

n
− 1

N

)
N2(NK + 2N + 2)

(N − 1)3
(16)

From where we can conclude that the sample size required must met the following
condition:

n ≥ N2(NK + 2N + 2)

CV E2(N − 1)3 +N(NK + 2N + 2)
(17)

In more general situations with complex sampling designs, when using the DEFF
it’s concluded that the appropriate expression to calculate the sample size (mini-
mizing the CVE) is the following:

n ≥ N2(NK + 2N + 2)×DEFF
CV E2(N − 1)3 +N(NK + 2N + 2)×DEFF

(18)
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4 Sample size for hypothesis test for variance

The calculation of sample size it’s not reduced only to the point estimate of the
parameter in a finite population, or even to the estimate of intervals of confidence.
It’s also possible to consider the judgment of hypothesis test over the population
variance of the results of the standardized test. This way is very different from
the traditional, since the research’s goal is not the point estimate of s2yU . In first
place consider the following hypothesis system:

H0 : s2yU = s2y0 vs. Ha : s2yU > s2y0

The system can be equivalently rewritten as:

H0 : s2yU − s
2
y0 = 0 vs. Ha : s2yU − s

2
y0 = D > 0

Note that D is the null effect that researcher consider appropriate to define as
threshold to determine that from that same value D is considered that the differ-
ence between the variance of the finite population s2yU and the null value s2y0 is
not negligible. Now, appealing to asymptotic normality over s̃2yy the decision rule
with significance level α is to reject H0 when:

s̃2yy − s2y0√
var(s̃2yy)

> z1−α (19)

So, the power function is given by:

β(s2yU ) = P

 s̃2yy − s2y0√
var(s̃2yy)

> z1−α


= P

(
s̃2yy > z1−α

√
var(s̃2yy) + s2y0

)
= P

 s̃2yy − s2yU√
var(s̃2yy)

> z1−α −
s2yU − s

2
y0√

var(s̃2yy)


= 1− Φ

z1−α − s2yU − s
2
y0√

var(s̃2yy)



Power, defined as the probability (subject to alternative hypothesis) of detecting
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a difference D between s2yU and s2y0 can be written as follows:

β < P

 s̃2yy − s2y0√
var(s̃2yy)

> z1−α
∣∣s2yU − s2y0 = D


= 1− Φ

z1−α − D√
var(s̃2yy)



≈ 1− Φ

z1−α − D

s2yU

√(
1

n
− 1

N

)
N2(NK + 2N + 2)

(N − 1)3

 (20)

Therefore, assuming that the selection of the sample is induced by a design of
simple random sampling with replacement, one can say that:

s4yU

(
1

n
− 1

N

)
N2(NK + 2N + 2)

(N − 1)3
<

D2

(z1−α + zβ)2

Clearing the value n of the above inequality, we have that the minimum sample
size to keep a power of at least 1 − β, when detect inga difference D, it is given
by:

n >
s4yU

D2

(z1−α + zβ)2
(N − 1)3

N2(NK + 2N + 2)
+
s4yU
N

(21)

When sample design is complex we can use the DEFF as in the above sections. In
this case the condition for n turns into:

n >
s4yU ×DEFF

D2

(z1−α + zβ)2
(N − 1)3

N2(NK + 2N + 2)
+
s4yU ×DEFF

N

(22)

5 Computational functions

The package samplesize4surveys of R contain functions that allow us to calculate
the sample size for the estimates of a proportion, a median, difference of two
proportions and difference of two medians. It also allows the calculation of sample
error and of the power level for a fixed sample size.

Now four functions are presented for the estimation of a population variance and
for conducting statistical hypothesis testing on this parameter of interest. Right
away is the description of these functions:
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Function ss4S2 allows calculating the sample size for estimates of s2yU subject
to a preset value of the coefficient of variation or the relative margin of
error. Additionally, it offers the user the option of mapping the coefficient of
variation and the margin of error as a function of the sample size, to make
easier the determination of n.

Function ss4S2H allows calculating the sample size for the estimates of s2yU
subject to the power level to detect a population variance greater than the
value of the null hypothesis. It also offers to the user the option of mapping
the power level in function of the sample size.

Function e4S2 allows calculating the coefficient of variation and the margin
of error for a fixed sample size. It also allows obtaining a mapping similar
to the one of ss4S2.

Function b4S2 allow calculating the power level for a fixed sample size. It
also allows obtaining a mapping similar to the one of ss4S2H.

In order to use the above functions it’s necessary to install and charge the pack-
age that contains them in the Comprehensive R Archive Network, that for, it’s
necessary to type the following code lines from the console:

install.packages("samplesize4surveys")

library(samplesize4surveys)

On the other hand, as the package is in constant update, the authors have arranged
a traveling repository in which users can use the latest features and interact with
the academic community in order to correct possible errors in computer codes and
improve the efficiency of functions, among others. To access to this control version
from ’R’, it’s necessary to type the following lines.

library(devtools)

install_github("psirusteam/samplesize4surveys")

For example, the following code line throws the sample size necessary to estimate
the variance of a characteristic of interest in a finite population with a coefficient
of kurtosis of one to reach an estimate coefficient of variation of maximum 5% and
a relative margin of error of 3%

Figure 3 shows that for a population of ten thousand people with a kurtosis coef-
ficient of one, it’s necessary to select a sample of at least 1937 students in order
to get a coefficient of variation less than 5%. It’s also necessary to select a sample
of at least 7193 in order to get a relative margin of error of maximum 3%.

On the other hand, if the necessity of the study doesn’t lie in the point estimate
of the population variance, but in the judgment of a statistical hypothesis, then
the minimum sample size would be given by the function ss4S2H. In particular,
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ss4S2(N = 10000, K = 1, cve = 0.05, me = 0.03, DEFF = 2, plot = TRUE)
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Figure 3: Sample sizes needed to minimize the coefficient of variation (left) and
the margin of error (right). Source: own

assume an asymmetric population (null kurtosis) of ten thousand students, where
the sample selection is made with a simple random design without replacement,
and over which you want to prove the following hypothesis system:

H0 : s2yU = 110 vs. Ha : s2yU > 110

The expressions found in this paper show that the sample size depend on the null
effect of D and s4yU , which implies that it’s necessary to know 2 an estimates close
to the value of s2yU . In this particular case assume that the null effect is of 10
points and that a plausible estimates of the population variance is 120. Therefore,
for a confidence of 95% and a power of 80%, the minimum sample size needed to
prove the above hypothesis system is of 1512 students. The curve of sample size
is in figure 4.

2In the field of the evaluation of education this is not a major challenge, since it’s usual to
make census tests every so often. That’s why, an estimates close to s2yU will be the calculated
value of the population variance for the last census test.
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ss4S2H(N = 10000, S2 = 120, S20 = 110, plot = TRUE)
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Figure 4: Sample sizes needed to prove a statistical hypothesis system about popu-
lation variance. Source: own elaboration.

6 Application: The controlled sample for Saber
11 test

The Colombian Institute of evaluation of education (ICFES) is the entity in charge
of measuring the quality of education in Colombia through the use of standardized
tests; particularly, and it applies every six months the state test Saber 11 (ICFES
2016), in which students of the last grade of secondary education are tested. This
test is also used by the institutions of high education as an admission filter.

Saber 11 test evaluate all the students inscribed in the test in the area of mathemat-
ics, critical writing, social and citizenship sciences, natural sciences and English.
Therefore, if it were intended to obtain some population characteristics as the
median or the variance of the results in each area, it would be enough to calcu-
late these values and it wouldn’t be necessary to make any estimate. However, the
ICFES must guarantee that it exists a reference sample, over which some measure-
ments of logistic control are applied, and with which population values are replied.
So the score’s process can be supported in case that some logistical drawbacks oc-
cur when developing the application in the field. For this, a probability sample
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that seeks to estimate the mean and variance of the results in different areas is
selected. In particular, it is important to find a sample size that ensures com-
pliance with some admissible values over the discussed parameters in this paper
for the estimation of variance. To make the selection of the sample, the sampling
frame is consolidated based on information from student enrollment and with the
assignment of people to places and rooms where they’re going to present the test.
The sampling design that proposed for the selection is performed in the following
three stages:

First stage: It begins with the selection of the places of application, a
systematic sampling design with variables of implicit stratification (munic-
ipality of presentation of the test and number of students who will submit
the test at each place) is used. It’s intended to ensure that in the sample are
large and small places scattered across the country.

Second stage: Within each application site selected in the first stage, all
classrooms with students are chosen, i.e. census is conducted. It optimizes
the provision of logistic resources within the test.

Third stage: It ends by choosing a sample (simple random without replace-
ment) of students within each classroom, in turn, included in each selected
site in the previous stages.

Note that the interest of this study focuses on the point estimate of the pop-
ulation variance. Therefore, it’s pretended to define the overall size of the
sample; it is, to find the total number of students to be selected for which
auxiliary information coming from the previous more recent application will
be used. The auxiliary variable is defined as the results of the test of math-
ematics (with the range between zero and one hundred) in the immediately
preceding census application, which has an average of 55.1, a population
variance of 241.5, and a kurtosis coefficient of -0026. Based on this infor-
mation and using the samplesize4surveys package, we proceed to estimate
an adequate sample size for estimation of variance using ss4S2 and ss4S2H

functions.

To set the allowable values, we analyzed how big could be the DEFF given
the importance of the study and the logistical implications of using a large
sample size. According to the above and using Monte Carlo type simulations
with auxiliary information, a DEFF value equal to 4.5 is estimated; besides,
a reference sample size is obtained. However, the final size depends on the
values defined for the CVE, the relative error and the power of the test.

Considering the above mentioned, the samplesize4surveys package was
used to calculate the minimum sample sizes needed. In particular, it was
determined that CVE of 4.5% is an appropriate threshold, in which case it is
necessary to select a sample of at least 3305 students; while for obtaining a
relative margin of error less than 9% a sample size of 3434 should be chosen.
Note that based on the expression (12), a relative margin of error of 9% im-
plies an absolute error margin of 0.09 * 241.5 = 21.7 points on math scores
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of the previous application; i.e., that the lower and upper bounds of the 95%
confidence interval are 219.8 and 263.2 respectively. Regarding the popula-
tion standard deviation, the lower and upper bounds of the 95% confidence
interval are 14.8 y 16.2. These values have been considered relevant taking
into account that reaching lower confidence intervals induces a significant
increase in the sample size.

Finally, and based on the above mentioned to reach the planned objectives
in this application, a sample size of 3.434 students is defined, being this a
value that allows to met all the desirable values for the statistics treated in
this paper for the estimation of the variance in the national results.

7 Conclusions

This article addresses the problem of the estimation of a population vari-
ance in a sample study. An approximate expression for the variance of the
estimator is found, and also the expressions to calculate the sample size
subject to sampling error concerning coefficient of variation and the margin
of error or subject to the power level when it comes to judging hypothe-
sis. As for the computational details, four functions were created for the
samplesize4surveys package of the statistical software R.

Most of the literature available now address mainly the problem of estima-
tion for a finite population, of parameters as total or population means and
mathematical developments to estimate their respective variances have been
proposed. However, there are other quite useful and interesting measures;
particularly in the current paper expressions to approximate the variance es-
timate of the Hájek estimator of a simple random sampling without replace-
ment is found.Based on this, theoretical expressions are derived to calculate
the minimum sample size in most complex designs using the design effect
DEFF , since it is not possible to find a general expression for calculating
the sample size in this type of complex designs.

With these developments, it is possible to define sample sizes for making
point estimates on the variance in finite populations when a margin of ab-
solute error and a relative margin of error of estimation or coefficient of
variation are fixed. Analogously, with these results, it is possible to test
hypotheses about the variance in order to ensure that a specific power on
a null D effect is keeped. Additionally, with the results found sample sizes
for variance functions as, for example, the standard deviation can be deter-
mined.

In the samplesize4surveys package functions that allow to develop the calcu-
lation of sample sizes for the population variance using the criteria described
in this paper were implemented. In this way the application of this methodol-
ogy in the everyday problems of approach of sampling designs and definition
of sample sizes becomes easier. Furthermore, in terms of computational ef-
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ficiency, this methodology clearly exceeds the definition of the sample sizes
using for example montecarlo type simulations.

In the particular case of the Saber 11 test managed by the ICFES, accurate
estimates of both average as the population variance should be obtained in
order to support the score process, and with the developed expressions it
was possible to determine efficiently a sample size that meets the particular
thresholds about the estimation errors. Similarly for other types of tests
developed by the ICFES the results presented in this paper will be very
useful, particularly in the test Saber 359 for which3 a controlled sample of
sites is selected and with which national estimates of vital importance in
decision-making in the education sector is performed.

The results presented can be extended to any context or study in which
a finite population is defined and be necessary to determine a sample size
under an allowed margin of estimation error; for example in studies of income
estimation, unemployment estimation, in the evaluation of public policies,
etc.

Although in this paper a mathematical methodology was developed to define
a sample size in a finite population, it should be clarified that there are other
factors that influence the final decision. For example, the costs of the study,
in the submitted expressions this component was not considered and in future
researches they can become a significant contribution given its importance.
In the same way, analogous contributions in determining the sample size
when you want to estimate other parameters of interest can be made.
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