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Abstract

In this paper, we present an application of GAMLSS (Generalized Additive Mod-
els for Location, Shape and Scale) to study bacterial cellulose production from
agro-industrial waste. An experiment was conducted to research the effects of pH
and cultivation time on bacterial cellulose yield obtained from discarded bananas.
Several models were fitted to the collected data to determine an estimated ex-
pression for the mean and variance of bacterial cellulose yield. We found that the
mean and variance of cellulose yield decrease as pH increases, while the opposite
occurs as cultivation time increases.

Palabras clave: GAMLSS models, Gamma distribution, linear regression, pa-
rameter estimation.

Resumen

En este articulo se presenta una aplicacién de los modelos GAMLSS (Generalized
Additive Models for Location, Shape and Scale) para estudiar la produccién de
celulosa bacteriana a partir de residuos agroindustriales. El experimento fue reali-
zado para investigar los efectos del pH y el tiempo de cultivo sobre el rendimiento
de celulosa bacteriana obtenida a partir de residuos de banano. Varios modelos
fueron ajustados a los datos recolectados para determinar expresiones estimadas
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para la media y la varianza del rendimiento de celulosa bacteriana. Del mejor
modelo obtenido se encontré que la media y la varianza del rendimiento de celulosa
bacteriana disminuye a medida que el pH se incrementa, mientras al aumentar el
tiempo de cultivo tanto la media como la varianza aumentan.

Keywords: Distribuciéon gamma, estimacién de pardametros, modelo GAMLSS,
regresion lineal.

1 Introduction

The problems of the massive exploitation of natural resources and environmental
pollution have motivated the building of an economy based on renewable materials.
For this reason, polymers obtained from renewable resources such as polysaccha-
rides, proteins, and lignin, among others, are attracting considerable attention
(Jaramillo et al. 2013). It has been found that valuable products such as bacterial
cellulose can be obtained from agro-industrial waste through suitable processing.
Obtaining bacterial cellulose depends on, among other factors, pH and fermenta-
tion time, and therefore, it is important to determine the combination of these
factors that maximizes the bacterial cellulose yield.

Unlike cellulose from plants, bacterial cellulose (BC) is produced with higher purity
and exhibits unique mechanical properties (Shoda & Sugano 2005), making it a
suitable raw material for high fidelity acoustic speakers, high quality paper, foods,
and as a biomaterial in cosmetics, pharmaceuticals and medicine (Raghunathan
2013, Coban & Biyik 2011, Rani & Appaiah 2013, Chawla et al. 2009).

Relatively high cost of BC production may limit its application to high value-added
products (Legge 1990). Significant cost reductions are possible with improvements
in fermentation efficiency and economics of scale (Raghunathan 2013). Obtaining
bacterial cellulose depends on, among other factors, pH and fermentation time,
and therefore, it is important to determine the operational values of these factors
that maximizes the bacterial cellulose yield.

2 GAMLSS

Rigby & Stasinopoulos (2005) proposed the GAMLSS models (Generalized Addi-
tive Model for Location Scale and Shape), which assume that the response vari-
ables y; (with i = 1,...,n) are independent with a probability density function
f(yi | 0;), where 8; = (u;, 04, v;, ;)T corresponds to the parameter vector. The
first two elements u; and o; are the location and scale parameters, and the others
are shape parameters. GAMLSS models allow each parameter to be a function of
a set of explanatory variables, and the distribution of random variable y; is not
limited to the exponential family (Rigby & Stasinopoulos 2005, Stasinopoulos &
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Rigby 2007). GAMLSS models can be summarized as follows:

J1

g(p) =n, =X16; + Z Zj1v (1)
j=1
Ja

g2(0) =My = X2Bs + > Zjavjo (2)
j=1
J3

93(V) =m3 = X363 + Z Z 373 (3)
j=1
Jy

ga(T) =my = XuBy + Z Z 1Y ja (4)
j=1

where gi(-) is a known monotonic link function for k = 1,...,4; u , o, v, T

and m,, are n-dimensional vectors; X, are known design matrices of order n x J,'C
associated with fixed effects B, of J,; x 1; and Zjj;, are known design matrices
of order n x g;), associated with random effects v, of g;; x 1 with multivariate

normal distribution. The quantity J, ,; represents the number of covariates used in
the fixed effects of m;, while Ji represents the number of random effects in 7.
The model given in (1) to (4) can be summarized in a compact form as follows:

Jk

9 (Or) = my, = X1y, + Z Z kY ji (5)
j=1

The GAMLSS model considers both continuous and discrete distributions with
different parameterizations for the same distribution. The details of the distribu-
tions and parameterizations used in GAMLSS models can be found in Rigby &
Stasinopoulos (2010, page 199). Another advantage of GAMLSS models is that
these models allow the use of fixed effects, random effects and non-parametric
smoothing functions to model all parameters of the assumed distribution for the
response variable.

3 Experiment description

An experiment was conducted to study the effect of pH and cultivation time (days)
on the production of bacterial cellulose using the microorganism Gluconacetobacter
medellinensis. Each sample unit corresponded to 100 grams of overmature banana,
which was cut into smaller pieces and homogenized with 400 mL of water using a
blender. This mixture was filtered using a cloth membrane. The juice obtained
from each sample was analyzed to determine the pH. After completion of the
fermentation time, the obtained bacterial cellulose membrane was removed and
placed in a solution of KOH at 5% (p/p) for 14 hours at a temperature between
28 and 30 degrees Celsius. The cellulose membranes were then washed successively

Comunicaciones en Estadistica, diciembre 2015, Vol. 8, No. 2



248 Freddy Herniandez, Mabel Torres, Lina Arteaga & Cristina Castro

with water until the pH was neutral, and the washed membranes were dried in a
convection oven at 60 degrees Celsius for 24 hours and then at 105 degrees Celsius
for 2 hours or until constant weight was reached. At the end of this process, the
amount of bacterial cellulose was measured; see Figure 1.

Figure 1: FExperiment illustration. Left, unit samples. Right, cellulose membrane.

The response variable in the experiment was the bacterial cellulose yield calculated
in grams of dry BC and obtained on each experimental unit. Figure 2 shows the
density plot and boxplot for bacterial cellulose yield, revealing that the response
variable is right-skewed with a minimum value of 0.0181, median of 0.0787, max-
imum of 0.5707 and 5 observations of 32 that appear to be outliers. For these
reasons, it seems reasonable to use a skewed distribution to model the cellulose

yield.
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Figure 2: Density and boxplot for bacterial cellulose yield (g). Source: Own elab-
oration.

Figure 3 shows the scatterplot for bacterial cellulose yield, pH and cultivation
time. We observe that the maximum bacterial cellulose yield was obtained at
pH 3.5 with 13 days of cultivation; it was noted that the yield decreases with
increasing pH and tends to increase with cultivation time.
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Figure 3: Scatterplot for cellulose (g), pH and cultivation time (days). Source:
Own elaboration.

4 Results

In this section, we present the results of using GAMLSS models to explain bacterial
cellulose yield (y) with the explanatory variables pH and cultivation time. In Table
1, we present the models considered: models 1 to 3 assume a response variable
with normal distribution (only as a reference point), and models 4 to 10 consider
asymmetric distributions for the response variable. The third column of the table
shows the structure in GAMLSS syntax to model the 1 and o parameters of each
distribution.

Table 1: AIC values for each fitted model.

Model  Distribution  Structure in GAMLSS syntax AIC
1 Normal gamlss (y pH+Time, family=N0()) -46.8
2 Normal gamlss(y“pH+Time, sigma.fo="pH+Time, family=NO()) -109.8
3 Normal gamlss(y~pH*Time + I(pH"2) + I(Time"2), family=NO(Q)) -49.7
4 Gamma gamlss (y pH+Time, family=GA()) -102.2
5 Gamma gamlss (y"pH+Time, sigma.fo="pH+Time, family=GA()) -118.1
6 Gamma gamlss (y“pH+Time, sigma.fo="pH, family=GA()) -119.8
7 log-Normal gamlss (y pH+Time, family=LNO()) -95.9
8 log-Normal gamlss (y pH+Time, sigma.fo="pH+Time, family=LNO()) -118.3
9 Inv. Gaussian  gamlss(y~pH+Time, family=IG()) -110.0
10 Inv. Gaussian  gamlss(y pH+Time, sigma.fo="pH+Time, family=IG()) -116.7

The last column of Table 1 shows the Akaike information criterion (AIC) proposed
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by Akaike (1973), which is a measure of the relative quality of a statistical model
for a given data set. The expression to obtain AIC is given by AIC = —2l +
2df , where ] corresponds to the estimated log-likelihood function defined by [ =
1(0) = Soi i log f(yi | fui, 64,04, 7;), and df corresponds to the number of estimated
parameters. Different models can be compared using their global deviances, GD =
—21 (if they are nested), or using the generalized Akaike information criterion,
GAIC = —2] + #df with # as a required penalty; when # = 2, the GAIC
corresponds to the usual Akaike information criterion AIC. The preferred model
is the one with the minimum AIC value. Table 1 shows that model 6 has the
lowest AIC. This model considers a gamma distribution for cellulose yield with
log(-) as the link function to model u and o.

The probability density function for the gamma distribution with 4 and ¢ param-
eters (u > 0 and o > 0) is given by

1 )
Zp

1 oy le s
(02w T ()

fy(ylpo)= (6)

where E(Y) = p and Var(Y) = o?u?. Figure 4 shows the density for two combi-
nations of parameters y and 0. The gamma distribution is suitable for modeling
skewed variables such as bacterial cellulose yield.
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Figure 4: Density for gamma distribution for two parameter combinations. Source:
Own elaboration.

Table 2 presents the estimated parameters for model 6, which considers the gamma
distribution for the response variable. From this table, we can see that each
variable is significant at 5% in explaining the p and o parameters.

From Table 2, estimated expressions can be obtained for the p and ¢ parameters:

log(fi) = —1.45 — 0.65pH + 0.18 Time (7
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Table 2: Estimated parameters for model 6.

251

log(p) model  Estimate Std. Error t value P-value
Intercept -1.45 0.58 -2.52 1.785e-02
pH -0.65 0.09 -7.43 5.468e-08

Time 0.18 0.03 5.36 1.173e-05

log(o) model Estimate Std. Error t value P-value
Intercept 1.58 0.57 2.79 0.0095142
pH -0.56 0.12 -4.54  0.0001058

(8)

The estimated mean and variance for cellulose yield can be expressed in terms of
w and o as follows:

log(6) = 1.58 — 0.56 pH

E(Y) = ji = ¢~ 1:45-0.65 pH+0.18 Time

=

2 _ 60.26—2.42 pH+0.36 Time

Var(Y) = ji? (10)

Q»

From the above expressions, we note that for each additional day of cultivation
time, at a fixed value of pH, the mean cellulose yield increases by 19.72% (obtained
from %18 = 1.1972); similarly, for fixed cultivation time, the variance decreases
by 91.11% for each additional unit of pH (obtained from e=2-42 = 0.0889). Figure
5 plots the estimated mean and variance for several cultivation time values. From
this figure, we observe that the mean and variance for cellulose yield decrease
as pH increases. The opposite occurs for mean and variance as cultivation time
increases.
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Figure 5: Estimated mean and variance for three cultivation time values. Source:
Own elaboration.

Figure 6 shows the heat plot for the estimated mean of bacterial cellulose yield
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given by the equation 9 and the colors represent the response variable. From this
plot we can see that the maximum expected bacterial cellulose yield can be obtain
with a low value of pH and a maximum value of cultivation time.

Time (days)

Figure 6: Heat plot for estimated mean of the bacterial cellulose yield E(Y)
Source: Own elaboration.

Figure 7 presents the residual analysis for model 6. The distribution of the resid-
uals is not far from the normal distribution, which indicates that this model is
appropriate for the data, aditionally, a Shapiro test for normality was carried out
with a p-value of 0.4027. Despite of in this experiment the sample size was 32, we
found that the model 6 explains properly the cellulose yield because the residuals
do not violate the normal distribution assumption for residuals.
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Figure 7: QQ@plot and worm plot for residuals of model 6. Source: Own elaboration.
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5 Conclusions

GAMLSS model is a useful statistical technique to model all parameters of a prob-
ability density (or mass) function for a response variable using a set of covariates.
In this paper we showed an application of GAMLSS to model the bacterial cel-
lulose yield using as covariates pH and cultivation time. The results showed in
Figures 5 and 6 point out that the maximum bacterial cellulose yield is obtain for
low values of pH and cultivation time close to 14 days, this results agree with the
experiment of Castro et al. (2012) that concluded that the optimal bacterial cel-
lulose yield for this type of experiment is found near pH 3.5. The two explanatory
variables used in the model were significant in explaining the mean and variance
of bacterial cellulose yield; the equations 9 and 10 could be used by researchers
to model (or predict) the system behavior under those conditions and to describe
the variability of the bacterial cellulose yield.
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