UNIVERS[DAD SANTO TOMAS Comunicaciones en Estadistica

PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA Diciembre 2024, Vol. 17, No. 2, pp. 1-13

Case Study of Bayesian Multiple Linear
Regression Using the Boston Housing Dataset

Modelado Jerarquico Bayesiano en Entornos de Regresion Lineal

Juan Sosa?®
jesosam@unal.edu.co

Abstract

We analyze the Boston housing dataset using multiple linear regression and ordi-
nary least squares techniques. Various models are fitted to the data to take advan-
tage of the predictive power of the explanatory variables, with careful evaluation
of each model’s assumptions and a comparative analysis among them. Relevant
explanatory variables that significantly impact the response variable are identified.
Additionally, cross-validation experiments are conducted on select models from the
analysis. Finally, we highlight certain limitations of OLS and propose the use of
ridge regression techniques as an alternative.

Keywords: Bayesian statistics; Boston housing dataset; cross-validation; multiple
linear regression; ordinary least squares.

Resumen

Analizamos el conjunto de datos de viviendas de Boston utilizando técnicas de
regresion lineal multiple y minimos cuadrados ordinarios. Se ajustan varios mo-
delos a los datos para mejorar el poder predictivo de las variables explicativas,
evaluando cuidadosamente las suposiciones de cada modelo y realizando un anali-
sis comparativo entre ellos. Identificamos las variables explicativas relevantes que
tienen un impacto significativo sobre la variable de respuesta. Ademés, realizamos
experimentos de validacion cruzada en modelos seleccionados del andlisis. Final-
mente, destacamos ciertas limitaciones de los OLS y proponemos el uso de técnicas
de regresién ridge como alternativa.

Palabras clave: Estadistica bayesiana; conjunto de datos de viviendas de Boston;
validacion cruzada; regresion lineal multiple; minimos cuadrados ordinarios.
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1. Introduction

In this study, we analyze the Boston housing dataset to investigate the factors
influencing housing prices in suburban Boston. The Boston housing dataset, in-
troduced by Harrison and Rubinfeld (1978), comprises various attributes descri-
bing housing values in the suburbs of Boston. This dataset, sourced from the
StatLib library maintained at Carnegie Mellon University, is accessible online at
https://archive.ics.uci.edu/ml/datasets/Housing. It has been extensively
analyzed across diverse scenarios, and as noted by Belsley et al. (2005, p. 229),
Harrison and Rubinfeld primarily aimed to study the effect of air pollution (mea-
sured by nitric oxide concentration) on the median value of owner-occupied homes
(MEDV, in $1,000s). Along with MEDV, the dataset includes thirteen additional
explanatory variables representing qualities influencing housing prices.

This dataset has become a foundational tool for assessing regression models and
exploring relationships between socio-economic and environmental factors and pro-
perty values. The original study employed hedonic pricing models to quantify the
influence of air pollution, among other variables, on housing prices. Since then,
the dataset has been widely utilized to evaluate statistical modeling techniques,
including multiple linear regression, transformations, and diagnostic assessments,
as emphasized by Belsley et al. (2005). Their work on regression diagnostics and
ridge regression remains critical for addressing multicollinearity and influential
observations, particularly in datasets like Boston Housing, where these challenges
frequently arise.

More recently, machine learning and advanced statistical techniques have exten-
ded the analytical capabilities for this dataset. Tibshirani (1996) introduced lasso
regression as a means to enforce sparsity in regression coefficients, improving inter-
pretability and predictive performance. Zou and Hastie (2005) further developed
the Elastic Net, combining the strengths of ridge and lasso regression, which is
especially valuable when dealing with highly correlated predictors. James et al.
(2013) showcased the utility of the dataset in demonstrating the application of
linear models, tree-based methods, and ensemble techniques. Additionally, Brei-
man (2001) highlighted its use in comparing bagging, boosting, and random fo-
rests, illustrating the dataset’s versatility in exploring advanced predictive models.
These studies collectively underscore the Boston Housing dataset’s continued re-
levance in developing and testing new methodologies, offering insights into both
traditional statistical approaches and modern machine learning frameworks.

The characteristics potentially influencing the median value of owner-occupied
homes (MEDV) were gathered at the suburb level in Boston. The explanatory
variables included in the dataset are as follows:

1. CRIM: Per capita crime rate by town.
2. ZN: Proportion of residential land zoned for lots over 25,000 square feet.

3. INDUS: Proportion of non-retail business acres per town.
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4. CHAS: Charles River dummy variable (1 if the tract bounds the river; 0

otherwise).

NOX: Nitric oxides concentration (parts per 10 million).

RM: Average number of rooms per dwelling.

AGE: Proportion of owner-occupied units built before 1940.

DIS: Weighted distances to five Boston employment centers.

© »® N o o

RAD: Index of accessibility to radial highways.

10. TAX: Full-value property tax rate per $10,000.

11. PTRATIO: Pupil-teacher ratio by town.

12. B: 1000(By — 0.63)2, where By, is the proportion of Black residents by town.

13. LSTAT: Percentage of the population with lower socioeconomic status.

Our work builds on the foundational study by Harrison and Rubinfeld (1978). We
follow diagnostic and model refinement techniques outlined by Belsley et al. (2005)
to identify influential data points and address multicollinearity issues. Additionally,
we adopt methodological insights from Faraway (2004) regarding variable trans-
formations and regression modeling to enhance the robustness and interpretability
of our results.

That is why, here, we apply multiple linear regression and ordinary least squares
(OLS) techniques to model the relationship between the median value of owner-
occupied homes (MEDV) and the explanatory variables given above. Notice, ho-
wever, that OLS has several limitations, which we address specifically throughout
this manuscript. For starters, it is highly sensitive to outliers and multicollinearity,
leading to unstable or biased coefficient estimates. OLS assumes homoscedasticity
(constant variance of residuals) and normality, making it unsuitable for data with
heteroscedasticity or non-normal distributions. It is also restricted to linear rela-
tionships and prone to overfitting in high-dimensional settings. Additionally, mea-
surement errors in predictors can introduce bias, and OLS cannot handle missing
data without imputation. These limitations, along with violations of assumptions
or model misspecifications, reduce its reliability, necessitating the use of alternative
approaches such as robust, ridge, or lasso regression in complex scenarios.

Our methodology begins with an exploratory data analysis to examine the distri-
butions and relationships of the variables. We then fit an initial regression model
and iteratively refine it by removing non-significant predictors, such as INDUS and
AGE, and incorporating quadratic terms for variables like CRIM, RM, and LS-
TAT, which exhibit non-linear relationships. To address the issue of non-normality
in residuals, we apply a log transformation to the response variable, following gui-
delines from Faraway (2004). Throughout the process, we use diagnostic techniques
to detect influential observations and assess the robustness of the models (Belsley
et al., 2005).
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Our objectives are to improve the predictive quality of the models, identify the
explanatory variables that significantly affect housing prices, and address the li-
mitations of OLS by considering alternative approaches such as ridge regression
(Belsley et al., 2005). Specifically, we aim to highlight the critical roles of varia-
bles like nitric oxide concentration (NOX) and the average number of rooms per
dwelling (RM) in determining housing prices. To ensure the predictive power of
the models, we perform a 10-fold cross-validation and compare the mean squared
errors across different model configurations.

The paper is organized as follows: In Exploratory Data Analysis, the dis-
tributions and relationships among variables are examined to identify necessary
transformations. Initial Models and Diagnostics outlines the baseline modeling
using multiple linear regression and OLS, followed by refinement through varia-
ble selection and diagnostics. The Transformations and Variable Selection
section addresses non-linearities and applies transformations to improve model fit.
Finally, in Discussion and Conclusions, the results are summarized, limitations
of OLS are highlighted, and ridge regression is recommended for future work.

2. Exploratory Data Analysis

The dataset comprises N = 506 instances and 13 predictors, capturing various
attributes relevant to housing values. While most predictors are continuous, CHAS
is a binary variable indicating proximity to the Charles River, included in the
model as a dummy variable with two levels. Importantly, the dataset is complete,
with no missing values, ensuring reliable statistical analysis.

Preliminary numerical and graphical summaries, including quantiles, boxplots,
and histograms, highlight significant differences in the range and variability of the
explanatory variables. For example, NOX values range from 0.385 to 0.871, while
B spans from 0.32 to 396.9, reflecting the diverse scales of these attributes, such
as concentrations, indexes, proportions, and physical measures. Overall, the 13
explanatory variables exhibit varied distributional shapes, from clear symmetry,
as seen with AGE, to pronounced skewness, observed in variables like CRIM, NOX,
B, and LSTAT.

The response variable exhibits a long right tail, a characteristic commonly observed
in economic variables such as values and incomes, which naturally display a heavy
decay toward higher values. This marginal behavior suggests that a transformation
may be necessary to satisfy certain model assumptions, enhancing the precision of
inferences and predictions. Additionally, scatterplots of MEDV against individual
predictors reveal varied relationships: some regressors, like LSTAT, show a clear
non-linear impact, while others, such as AGE, present a less defined dependency.
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3. Initial Models and Diagnostics

We begin by fitting a multiple linear regression model that includes all 13 predictors
in a linear form, as follows:

MEDV; = By + 1CRIM; + 52ZN; + ...+ B13LSTAT; + ¢, , (1)

where ¢; A N(0,02%), for i = 1,...,506. This initial model is statistically sig-
nificant (p ~ 0.00) and achieves an adjusted R? value of 0.734. However, two
predictors—INDUS (p = 0.738) and AGE (p = 0.958)—are not statistically signi-
ficant. Conversely, key variables central to the study, such as NOX (p =~ 0.00) and
RM (p = 0.00), show high significance, emphasizing their relevance in explaining
the response variable.

Before checking assumptions, we remove the predictors INDUS and AGE from the
model since they turned out to be nonsignificant (this is confirmed by a stepwise
procedure), and then we readjust model (1) without considering these two varia-
bles. By doing so, this model with 11 regressors is still significant (p ~ 0.00) with
an dej = 0.734. We note that now each independent variable is significant, and
the variability explained by the model has not changed in comparison with model
(1). We also perform an F-test to evaluate the assessment of this reduced model in
comparison to the saturated model, as in (Faraway, 2004, pp. 26-31), and we fail
to reject the null hypothesis; therefore, the reduced model is preferred (p = 0.944).

Now, we check the assumptions in this (untransformed) model with 11 explanatory
variables (all but INDUS and AGE). The nonlinear pattern in the plot of standar-
dized residuals versus fitted values in the first panel of Figure 1 strongly suggests
that some predictors should enter the model in a quadratic or cubic fashion, for
example. Furthermore, the normal Q-Q plot of the residuals in the second panel of
Figure 1 shows clear deviations from the normality assumption: the distribution of
the residuals is clearly skewed with a heavy right tail. Both figures reveal potential
outliers and/or influential observations.

4. Transformations and Variable Selection

Before checking more assumptions in detail, we recognize the need to modify the
model to improve its fit and satisfy key assumptions. This involves, first, incorpo-
rating quadratic or cubic terms for predictors that exhibit non-linear relationships,
and second, applying an appropriate transformation to the response variable to
address skewness and improve normality.

To improve the model, we first examine the plots of residuals versus each regressor
to identify terms that should be included in a higher-order form. Based on this
analysis, we add quadratic terms for CRIM, RM, and LSTAT to the model (with
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Figure 1: Diagnostic plots (untransformed response variable).
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11 predictors), as these variables exhibit relationships beyond linearity with the
residuals. Cubic terms are not included because they turn out to be nonsignificant
(as justified in Faraway (2004, p. 123)). After incorporating these quadratic terms,
the residuals versus fitted values plot indicates that no further higher-order terms
are necessary. The resulting model, which now includes 14 predictors, is significant
(p ~ 0.00) with an dej = 0.814, reflecting a substantial increase in the explained
variability. However, the normal Q-Q plot of residuals continues to display serious
deviations from normality, including skewness and a heavy right tail, with residuals
ranging from -7.318 to 6.788.

Before going any further, we proceed to transform the response variable to co-
rrect the skewness observed in the residuals (while acknowledging that the long
tail behavior may persist, as transformations primarily aim to symmetrize distri-
butions). We choose to work with MEDV in the log scale, a popular choice for
positive data, partly for interpretability. MEDYV is better analyzed on a multipli-
cative rather than additive scale since it measures value. For instance, $1,000 holds
far greater relative importance to a poor person than to a millionaire, as $1,000 re-
presents a much larger fraction of the poor person’s wealth (Faraway, 2004, p. 165).
Additionally, we apply the Box-Cox transformation to the response in the model
with 14 regressors, yielding AyLg = 0.298 and Clgs o (M) = (0.423,1.181), which
confirms that the log transformation is a suitable choice.

Thus, we adjust a model using the log scale for MEDV, which remains significant
(p =~ 0.00) with an Ridj = 0.819, nearly the same as in the previous case. However,
ZN now turns out to be nonsignificant (p = 0.215), allowing us to remove it
from the model. Notably, the Box-Cox transformation with A = 0.298 yields the
same result. Consequently, we arrive at a transformed model with the response

variable in the log scale and 13 significant predictors, three of which are included
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in quadratic form. The final model is expressed as:

log(MEDV;) = B + 1CRIM; + 8,CHAS; + 5NOX,
+ B4RM; + B5DIS; + BsRAD; + 57 TAX;
+ BsPTRATIO; + f9B; + B10LSTAT;
+ B11CRIM? + B12RM? + Bi3LSTAT? +¢; (2)

where €; " N(0,02), for i = 1,.. ., 506.

5. Final Model and Diagnostics

Working with model (2), the plot of residuals versus fitted values in the first
panel of Figure 2 is well behaved, indicating no issues with nonlinearity. However,
the normal Q-Q plot of the residuals in the second panel of Figure 2 reveals
substantial departures from normality due to the heavy tails in the distribution.
The standardized residuals now range from -4.943 to 5.014, reflecting the correction
of skewness in the residuals. Additionally, a simple linear regression of the fitted
values versus the residuals (as described in Faraway (2004, p. 59)) does not suggest
any symptoms of nonconstant variance in the residuals. From these diagnostic
plots, we identify observations 365, 372, and 373 as hightailed, marking them as
influential and/or outliers.

The Bonferroni corrected test (Monahan, 2011, p. 143), based on externally stu-
dentized (or crossvalidated) residuals, indicates that observations 365, 372, 373,

Figure 2: Diagnostic plots (transformed response variable).
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and 410 could be considered outliers (see Table 1) and warrant further examina-
tion. Observations 365, 372, and 373 had already been identified previously, and
their residuals and p-values confirm them as critical cases. Observation 410, ho-
wever, appears to be an outlier primarily due to the heavy tails in the residual
distribution.

Additionally, following the rule of thumb (Faraway, 2004, p. 69), which states that
leverages greater than 2p/N = 0.0553 should be examined more closely, we identify
41 observations exceeding this threshold (including observation 365). Are all of
these values unusual? A half-normal plot of these leverage values (Faraway, 2004,
p. 70) suggests that observations 381 and 366 stand out significantly, indicating
that their leverage is unusually high compared to the others.

Table 1: Bonferroni corrected test based on externally studentized residuals.

Obs. T P

372 5.16 0.000
365 -5.10 0.000
373 4.64 0.002
410  3.98 0.039

An influential point may or may not be an outlier and may or may not have large
leverage, but it will tend to have at least one of these two properties (Faraway,
2004, p. 75). We identify 37 observations with D-values (Cook’s distance values)
greater than 4/(N — p) = 0.008. Once again, which of these values are truly
unusually high? Influential plots, such as the one shown in Figure 3, indicate that
special care should be taken with observations 365, 372, 373, 406, 410, and 413.
Therefore, considering the heavy tail distribution of the residuals, and based on
their residuals and D-values, we conclude that observations 365, 373, and 372 are
indeed influential.

Finally, we decide to adjust a model excluding observations 365, 373, and 372.
This model (see Table 2) remains significant (p ~ 0.00) with an Rﬁdj = 0.8423,
indicating an improvement compared to model 2. Diagnostic plots exhibit similar
behavior as before, but this time the standardized residuals range from -3.802 to
4.245, a smaller range than in model 2. Examining other diagnostic plots, we still
detect candidates for outliers and/or influential observations, but these cases are
attributed to the long-tail distribution of the residuals rather than other issues.
Notably, one of the key reasons for excluding these three observations is the signi-
ficant changes detected in the coefficients, as illustrated in Table 3. For example,
we observe changes of 10 % and 20 % for NOX and RM, respectively, which are
variables of primary interest in this study.
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Figure 3: Plot of influential observations.
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Table 2: Summary of the final model.

0.1 0.2 0.3 0.4
Hat-Values

0.5

Variable Estimate Std. Error t value P

(Intercept) 7.1007 0.3815 18.61  0.0000
CRIM -0.0273 0.0034 -8.10  0.0000
CRIM? 0.0002 0.0000 5.01 0.0000
CHAS1 0.0910 0.0299 3.05 0.0025
NOX -0.6203 0.1212 -5.12  0.0000
RM -0.9109 0.1164 -7.83  0.0000
RM?2 0.0787 0.0091 8.63 0.0000
DIS -0.0359 0.0056 -6.41  0.0000
RAD 0.0156 0.0024 6.50  0.0000
TAX -0.0004 0.0001 -3.94  0.0001
PTRATIO  -0.0303 0.0043 -7.08  0.0000
B 0.0003 0.0001 2.89 0.0040
LSTAT -0.0431 0.0049 -8.87  0.0000
LSTAT? 0.0005 0.0001 3.66 0.0003

6. Discussion and Concussions

In this section, we summarize all our findings and discuss the results of the analy-
sis. First, we observe that the distribution of the residuals in all adjusted models
exhibits heavier tails than the normal distribution. Consequently, it becomes natu-
ral to consider estimators that are more robust than OLS for handling departures
from normality in the error structure, as suggested by Belsley et al. (2005, pp. 229—
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Table 3: Percentual change in the coefficients due to deletion of influential obser-
vations. A negative sign indicates a decrease.

CRIM? NOX RM RM?
9.54 -10.17 20.34 20.41
DIS PTRATIO LSTAT LSTAT?

-14.84 -8.63 -9.46 -15.50

244). Furthermore, we note that the large proportion of observations flagged by the
diagnostics as requiring further attention is attributable not only to a high number
of leverage points but also to the non-Gaussian nature of the error distribution.

We consider six models since the analysis itself naturally leads us to consider
several alternatives:

1. Saturated model including all baseline predictors and no transformations of
any kind, see equation (1).

2. Model as in 1, but removing two predictors, namely, INDUS and AGE.

3. Model as in 2, adding quadratic predictors, namely, CRIM?, RM2, and
LSTAT?.

4. Model as in 3, adjusting the response variable to the log scale.
5. Model as in 4, removing one predictor, ZN (see equation (2)).

6. Model as in 5, removing influential observations.

Table 4 summarizes models 1 to 6 in detail. We observe that the strategy of remo-
ving nonsignificant variables and transforming the response variable works effec-
tively, as it consistently increases Ridj while reducing both ¢ and the information
criteria (AIC and BIC). We include an additional division in the table to explicitly
highlight the change in the response variable’s scale. Furthermore, we note that
model 3 represents the best option for interpretability without using the log scale.
On the other hand, model 6 emerges as the most suitable for predictive purposes
without resorting to ridge regression, as suggested by Belsley et al. (2005).

In relation to the predictors included in the model, we observe that NOX (the most
important regressor according to the research) is significant in all the models consi-
dered and has a negative effect on MEDV. This result is expected, as higher levels
of NOX are likely to decrease the value of owner-occupied homes. The NOX coeffi-
cient appears to be well-determined based on row-deletion diagnostics, indicating
that its magnitude is not strongly influenced by data perturbations. Furthermore,
since N > p, we find that both inferences and predictions are robust to departu-
res from normality. Lastly, we note that the proportion of owner-occupied units
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Table 4: Models’ information. M := Model. Tr.? := Is the model using MEDV in

log scale? #N := Number of nonsignificant predictors in the model.

M N p T7 R #N & AIC  BIC NOX
1 506 14 No 073 2 475 3027.6 3091.0 -17.8
2 506 12 No 073 0 474 30237 30787 -17.4
3 506 15 No 081 0 397 2847.1 29147 -14.6
4 506 15 Yes 082 1 0.17 -3187 -251.1 -0.67
5 506 14 Yes 082 0 017 -319.1 -2557 -0.68
6 503 14 Yes 084 0 016 -392.0 -328.7 -0.62

built prior to 1940 and the proportion of non-retail business acres per town do
not significantly impact the value of owner-occupied homes. Additionally, we have
serious doubts regarding the relevance of the proportion of residential land zoned

MEDV
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Figure 4: 10-fold cross-validation using model 1.
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for lots over 25,000 sq.ft. in predicting MEDV.

All models report three strong influential observations, namely, observations 365,
372, and 373. Referring to the source of these observations (Belsley et al., 2005,
p. 230), we find that observation 365 originates from Back Bay, while observations
372 and 373 are from Beacon Hill. Examining all candidates identified as influential
and/or outliers in model 5, we detect 37 such observations, which are clustered
within specific towns. This clustering supports our suspicion that a geographical
factor influencing housing values has not been accounted for in the model. As
noted by Belsley et al. (2005, p. 243), ridge regression highlights that influential
data points often concentrate heavily within a few neighborhoods, suggesting that
the housing-price equation may not be as well specified as it could be. Lastly, none
of the models presented issues with homoscedasticity.

Finally, the DAAG package in R, which provides a function called CV1lm, allows us
to perform K-fold cross-validation. This method randomly removes K-folds for
the testing set and fits the model using the remaining (training set) data. At the
bottom of the output, the cross-validation residual sums of squares (overall MS)
is reported. The ten-fold cross-validation shown in Figure 4 corresponds to model
6, for which the overall MSE is 0.0282. According to this plot, these experiments
yield consistent results, and the low value of the reported MSE confirms the high
prediction quality of this model. Additionally, we perform ten-fold cross-validation
on models 1 and 3 (both with the same scale for the response variable) and obtain
MSE values of 24 and 17.5, respectively. This indicates that, as expected, removing
nonsignificant predictors and incorporating nonlinear terms significantly improves
the model’s predictive capacity.
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