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Abstract

Considering the flexibility and applicability of Bayesian modeling, main characte-
ristics of a hierarchical model are revised and summarized under the usual assum-
ption of exchangeability: We present the probabilistic structure of the model, all
the levels involved in it, and the full conditional distribution of every parameter of
the model. In this model, we allow the mean of the second stage of the model to
have a linear dependency on a set of covariates by means of a regression approach.
In addition, the Gibbs sampling algorithm used to obtain samples from this hie-
rarchical model is fully described and derived. The case study is one in which we
characterize in depth the average surface of the sea temperature register by 86
devices in the Mediterranean sea by the type of devise and the location describe
by the latitude and the longitude. The hierarchical model fitted considerably well
to this data set. Findings derived in this application include the description of the
within and between means and variability of the registered temperatures, evidence
of similar devise precision, differences among types of devise, and good qualities
of prediction of the model. Finally, the prediction ability of the model for each
type of devise is tested using data from the National Oceanic and Atmospheric
Administration.

Keywords: Gibbs sampling; hierarchical model; regression; surface of the sea tem-
perature.

Resumen

Considerando la flexibilidad y aplicabilidad del modelado Bayesiano, se revisan y
resumen las principales caracteŕısticas de un modelo jerárquico bajo el supuesto
usual de intercambiabilidad: presentamos la estructura probabiĺıstica del modelo,
todos los niveles involucrados en él y la distribución condicional completa de cada
parámetro del modelo. En este modelo, permitimos que la media de la segunda
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etapa del modelo tenga una dependencia lineal con un conjunto de covariables
mediante un enfoque de regresión. Además, se describe y deriva completamente el
algoritmo de muestreo de Gibbs utilizado para obtener muestras de este modelo
jerárquico. El estudio de caso es uno en el que caracterizamos en profundidad la
superficie media de la temperatura del mar registrada por 86 dispositivos en el
mar Mediterráneo, clasificados por el tipo de dispositivo y la ubicación descrita
por la latitud y la longitud. El modelo jerárquico se ajustó considerablemente bien
a este conjunto de datos. Los hallazgos derivados de esta aplicación incluyen la
descripción de las medias y la variabilidad dentro y entre las temperaturas regis-
tradas, evidencia de precisión similar entre dispositivos, diferencias entre tipos de
dispositivos y buenas cualidades de predicción del modelo. Finalmente, se prueba
la capacidad de predicción del modelo para cada tipo de dispositivo utilizando
datos de la Oficina Nacional de Administración Oceánica y Atmosférica.

Palabras clave: muestreo de Gibbs; modelo jerárquico; regresión; temperatura
de la superficie del mar.

1. Introduction

Bayesian hierarchical modeling is a versatile statistical framework that integrates
Bayesian inference with hierarchical modeling techniques, suitable for analyzing
data structured into nested or hierarchical levels (Gelman et al., 2013). This ap-
proach is particularly advantageous in fields such as education, healthcare, and en-
vironmental science, where data naturally exhibit hierarchical relationships, such
as students within schools or patients within hospitals. Thus, Bayesian hierarchical
modeling provides a powerful framework for analyzing hierarchical data structures,
offering flexibility in modeling complex relationships and uncertainty quantifica-
tion across various scientific disciplines.

At its core, Bayesian hierarchical modeling leverages probabilistic principles to
model uncertainty across different levels of data aggregation. It begins with the
specification of prior distributions that encapsulate prior beliefs about model pa-
rameters. These priors are updated to posterior distributions following the incor-
poration of observed data, providing a coherent means to quantify uncertainty and
make inferences (McElreath, 2018).

Applications of Bayesian hierarchical models are diverse, spanning from predictive
modeling and inference to understanding complex relationships within datasets.
For instance, researchers use hierarchical models to analyze spatial data in envi-
ronmental studies or to evaluate educational interventions across different schools
(Gelman et al., 2013). Here, we do the former.

Implementing Bayesian hierarchical models often involves sophisticated compu-
tational techniques such as Markov Chain Monte Carlo (MCMC) methods (Ga-
merman and Lopes, 2006), which facilitate sampling from the posterior distribution
of parameters. This process allows for the estimation of model parameters and as-
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sessment of model fit, crucial for robust statistical analysis Gelman et al. (2013).
Despite its advantages, Bayesian hierarchical modeling presents challenges, inclu-
ding the need for careful prior specification that balances prior knowledge with
data-driven information. Moreover, the computational intensity of these methods
requires adequate resources and expertise in Bayesian statistics (Hoff, 2009).

A feature characteristic of many phenomena in nature is that the observed data,
yij , can be used to estimate aspects of the population distributions of the θj even
though the values of θj are not themselves observed. It is natural to model such
a problem hierarchically, with observable outcomes modeled conditionally on cer-
tain parameters, which themselves are given a probabilistic specification in terms
of further parameters, known as hyperparameters. Hierarchical models can have
enough parameters to fit the data well, while using a population distribution to
structure some dependence into the parameters, thereby avoiding problems of over-
fitting (Gelman et al., 2013, p.101). In addition, by establishing hierarchies we are
not forced to choose between complete pooling and not at all as the classic analysis
of variance does (Gelman et al., 2013, pp.101, 115). In this way, the hierarchical
model in the linear regression setting is a conceptually straightforward generali-
zation of the normal hierarchical model. We use an ordinary regression model to
describe within-group heterogeneity of observations, then describe between-group
heterogeneity using a sampling model for the group-specific regression parameters
(Hoff, 2009, p.196).

In this way, considering the flexibility and applicability of Bayesian modeling,
main characteristics of a hierarchical model are revised and summarized under
the usual assumption of exchangeability: We present the probabilistic structure
of the model, all the levels involved in it, and the full conditional distribution of
every parameter of the model. In this model, we allow the mean of the second
stage of the model to have a linear dependency on a set of covariates by means of
a regression approach. In addition, the Gibbs sampling algorithm used to obtain
samples from this hierarchical model is fully described and derived.

The case study is one in which we characterize in depth the average surface of
the sea temperature register by 86 devices in the Mediterranean sea by the type
of devise and the location describe by the latitude and the longitude. The hie-
rarchical model fitted considerably well to this data set. Findings derived in this
application include the description of the within and between means and variabi-
lity of the registered temperatures, evidence of similar devise precision, differences
among types of devise, and good qualities of prediction of the model. Finally, the
prediction ability of the model for each type of devise is tested using data from
the National Oceanic and Atmospheric Administration (NOAA).

This article is structure as follows: Section 2 provides all the details about the the
hierarchical normal model including model specification and posterior inference.
Then, Section 3 presents a real-world application where we fully characterize in
depth the average surface of the sea temperature register by 86 devices in the
Mediterranean sea. Finally, Section 4 discusses our main findings and shows some
ideas for future research.
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2. The hierarchical normal model

Here we present the treatment of a hierarchical model (with a regression level
on it) based on the normal distribution, in which observed data is assumed to
be normally distributed with a different mean and variance for each group or
experiment. Here we follow the same notation as inGelman et al. (2013, Chap. 5).

2.1. The model

We take into account m independent groups, each group with ni independent
normally distributed data points, yij , each with unknown mean (group effect) µi

and unknown variance σ2
i ; that is, yij ∼ N(µi, σ

2
i ), j = 1, . . . , ni, i = 1, . . . ,m.

This means that ȳi. ∼ N(µi, σ
2
i /ni) where ȳi. =

1
ni

∑ni

j=1 yij is the sample mean of
the i-th group, i = 1, . . . ,m.

We consider a hierarchical model in which the hierarchies are given by:

p(ȳi. | µi, σ
2
i ) = N(ȳi. | µi, σ

2
i /ni) Likelihood

p(µi | β, τ2) = N(µi | xT
i β, τ

2) Stage I

p(σ2
i | ξ2) = IG(σ2

i | α+ 1, αξ2) Stage I

p(β, τ2) ∝ 1 Stage II

p(ξ2) = G(ξ2 | a, b) Stage II

where the µi and the σ2
i are parameters of the model, β, τ2, and ξ2 are the

corresponding hyperparameters (in particular β = [β1, . . . , βp]
T is a vector of p

β,τ
2
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Figure 1: Graphical representation of a hierarchical model.
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regressors), xi = [xi1, . . . , xip]
T is a vector of p explanatory variables, and α, a, and

b are fixed constants picked according to external information of the data set (this
hierarchical model is illustrated in figure 1). Thus, the unknown quantities in this
model (2m+p+2 in total) include the group-specific means µ = (µ1, . . . , µm) and
variances σ2 = (σ2

1 , . . . , σ
2
m), the mean and variance (xT

i β, τ
2) of the population

of group-specific means, and the variance ξ2 of the population of group-specific
variances. This model is susceptible of generalization; for instance, we could allow
the model to have a proper prior for (β, τ2), and we also could include more
hyperparameters in the model (α does not need to be fixed). See for example Hoff
(2009, p. 143).

2.2. Posterior inference

Joint posterior inference for the parameters can be made by construction a Gibbs
sampler which requires iteratively sampling each parameter from its full conditio-
nal distribution.

2.2.1. Posterior distribution

Let yi = (yi1, . . . , yini) be the measurements of group i, i = 1, . . . ,m, y =
(y1, . . . ,ym) be the entire set of observations, and θ = (µ,σ2,β, τ2, ξ2) be the
full parameter-hyperparameter vector. The posterior distribution of θ is then gi-
ven by

p(θ | y) = p(β, τ2) p(µ | β, τ2) p(ξ2)p(σ2 | ξ2) p(y | θ) ,

which leads to

p(θ | y) =
m∏
i=1

N(µi | xT
i β, τ

2)× G(ξ2 | a, b)×
m∏
i=1

IG(σ2
i | α+ 1, αξ2)×

m∏
i=1

N(ȳi. | µi, σ
2
i /ni)

=
m∏
i=1

1
√
2πτ

exp

{
−

1

2τ2
(µi − xT

i β)
2

}
×

ba

Γ(a)
(ξ2)a−1e−bξ2

×
m∏
i=1

(αξ2)α+1

Γ(α+ 1)
(σ2

i )
−((α+1)+1)e−(αξ2)σ2

i ×
m∏
i=1

ni√
2πσi

exp

{
−

ni

2σ2
i

(ȳi. − µi)
2

}
.

Although this is an abuse of standard mathematical notation, the full conditio-
nal distribution (fcd) of parameter ϕ given the rest of the parameters and the
data y is denoted by p(ϕ | rest,y). We derived these distributions looking at the
dependencies in the full posterior distribution. Thus, we have that:

The fcd of µi, i = 1, . . . ,m is

p(µi | rest) = N

µi

∣∣∣∣∣
niȳi.

σ2
i

+
xT

iβ
τ2

ni

σ2
i
+ 1

τ2

,
1

ni

σ2
i
+ 1

τ2

 .
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The fcd for σ2
i , i = 1, . . . ,m, is

p(σ2
i | rest) = IG

(
σ2
i | α+ 3/2, αξ2 + ni(ȳi. − µi)

2/2
)
.

The fcd of ξ2 is

p(ξ2 | rest) = G

(
ξ2

∣∣∣∣∣ a+m(α+ 1), b+ α

m∑
i=1

1/σ2
i

)
.

The fcd of τ2 is

p(τ2 | rest) = IG
(
τ2 | m/2− 1, ∥µ−Xβ∥2/2

)
,

where X = [x1, . . . ,xm]T.

The fcd for β is
p(β | rest) = N

(
VβX

Tµ, τ2Vβ

)
,

where Vβ = (XTX)−1.

2.2.2. Gibbs sampling algorithm

Let ϕ(m) denote the state of parameter ϕ in the m-th iteration of the algorithm.
The algorithm is as follows:

1. Choose an initial configuration for each parameter in the model, say µ
(0)
1 , . . . , µ

(0)
m ,

(σ2
1)

(0), . . . , (σ2
m)(0), β(0), (τ2)(0), and (ξ2)(0).

2. Update µ
(m−1)
1 , . . . , µ

(m−1)
m , (σ2

1)
(m−1), . . . , (σ2

m)(m−1), β(m−1), (τ2)(m−1), and
(ξ2)(m−1) until convergence:

a) Sample µ
(m)
i , i = 1, . . . ,m, from

p
(
µi

∣∣∣(σ2
i )

(m−1),β(m−1), (τ2)(m−1),y
)
.

b) Sample (σ2
i )

(m), i = 1, . . . ,m, from

p
(
σ2
i

∣∣∣µ(m)
i , (ξ2)(m−1),y

)
.

c) Sample (ξ2)(m) from

p
(
ξ2
∣∣∣(σ2

1)
(m), . . . , (σ2

m)(m),y
)
.

d) Sample (τ2)(m) from

p
(
τ2
∣∣∣µ(m)

1 , . . . , µ(m)
m ,β(m−1),y

)
.

e) Sample β(m) from

p
(
β
∣∣∣µ(m)

1 , . . . , µ(m)
m , (τ2)(m),y

)
.

3. Cycle until achieve convergence.
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Figure 2: Location of each device in the Mediterranean Sea: bucket (black), eri (red), f.buoy

(green), and d.buoy (blue).

3. Application

The data set contains the mean of the observations recorded by m = 86 different
devices on the temperature of the sea (SST) along with the type of device (four
categories: bucket, eri, f.buoy, and d.buoy) in a number of locations (for which the
latitude and longitude is available) in the Mediterranean in December 2003 (see
Figure 2). Thus, the data available of the j − th device, j = 1, . . . , 86, is given by
the array

(latitudi, latitudi, ȳi., ni, typei)

where ȳi. is the average of the ni temperatures (in Celsius ) recorded by devi-
ce i. This way, we have that y = [ȳ1, . . . , ȳ86], β = [β1, . . . , β12]

T , and xi =
[xi1, . . . , xi12]

T is a p-dimensional vector of covariates, p = 12, with xi1 = 1 for
each device i, xi2 = 1 if typei = eri, and 0 otherwise, xi3 = 1 if typei = f.buoy,
and 0 otherwise, xi4 = 1 if typei = d.buoy, and 0 otherwise, xi5 = latitudei,
xi6 = xi2 × xi5, xi6 = xi3 × xi5, xi6 = xi4 × xi5, xi9 = longitudei, xi10 = xi2 × xi9,
xi11 = xi3 × xi9, and xi12 = xi4 × xi9, which under the assumptions of the model
implies that

If typei = bucket then

E (µi|β,xi) = β1 + β5lati + β9loni ,
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If typei = eri then

E (µi|β,xi) = (β1 + β2) + (β5 + β6)lati + (β9 + β10)loni ,

If typei = f.buoy then

E (µi|β,xi) = (β1 + β3) + (β5 + β7)lati + (β9 + β11)loni ,

If typei = d.buoy then

E (µi|β,xi) = (β1 + β4) + (β5 + β8)lati + (β9 + β12)loni .
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Figure 3: Descriptive plots: bucket (black), eri (red), f.buoy (green), and d.buoy (blue).

3.1. Exploratory data analysis

A histogram of the sample averages is shown in the first panel of 3. The range of
average SSTs is from 15◦ to 22◦ which seems quite large in comparison with the
mean SST in 2003 (20.5◦ according to Skliris et al. 2011). The second panel shows
the relationship between the sample average and the sample size. This plot shows
a peculiarity of this data set en relation to the sample sizes: ni ≤ 3 for 94% of the
devices, whereas for just a few devices the sample size is bigger, namely, n5 = 23,
n6 = 24 n7 = 37, n8 = 62, and n9 = 94, which are f.buoy devices. In addition, as
expected, this plot points out that in general devices with very high or very low
sample averages tend to be those devices with low sample sizes.

Furthermore, the third panel of figure 3 summarizes the main features about the
distribution of the mean temperature by type of devise; taking into account this
plot we perceive some differences among types of devise (also capture by the mo-
del) in location and maybe scale. On the other hand, the fourth panel shows the
location of each devise. In this plot the center of each circle corresponds to the
location of the device according to its longitude and latitude, whereas the radius
is proportional to the mean SST. Colors in this figure correspond to the type of
device. It’s very interesting to be aware of two main facts: f.buoy devices (the ones
with largest sample sizes) are located in the east of the Mediterranean Sea (see
figure 2 to see the location in more detail); and all the circles seem to have simi-
lar radius, which strongly suggests that variances of population of group-specific
means are similar (this fact will be relevant to set the fixed constants in the model
(α, a, and b) according to the external information).
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3.2. Prior distributions

To run the Gibbs sampling algorithm described in section 2.2, we need to pick
appropriate values for a, b, and α. Hyperparameters a and b control the the prior
distribution for the scale parameter (ξ2) that influences the distribution of the
population of group-specific variances. According to the SSTs given in Figure 2 of
Skliris et al. (2011), in 2003 the variability in the temperature of Mediterranean
Sea is roughly 1.08◦. On the other hand, according to the data set, the variability
of the sample mean temperatures is about 1.96 (which is clearly an overestimate
of the variance reported in Skliris et al. 2011).

Having this in mind, we only weakly concentrate the prior distribution around
this value by taking α = 9, a = 10 and b = a/2: doing it in this way is really
helpful mainly because E

(
ξ2 | a, b

)
= 2 and Var

(
ξ2 | a, b

)
= 0.4 which makes

that E
(
σ2
i | ξ2

)
is around 2 and Var

(
σ2
i | ξ2

)
= 0.6, i.e., a weakly concentration

of σ2
i around 2 (cv = 35%). Running the Gibbs sampler algorithm produces a

S× (2m+ p+2) matrix containing a value of the SST mean and variance for each
device (µi, σ

2
i ), and values of β, τ2 and ξ2 at each iteration of the Markov chain.

3.3. MCMC diagnostics

Before doing inference using the MCMC samples we should determine if there
might be any problems with the Gibbs sampler. The first thing we want to do
is to see if there are any indications that the chain is not stationary, i.e., if the
simulated parameter values are moving in a consistent direction. Standard practice
is to plot to produce boxplots of sequential groups of samples (Hoff, 2009, p. 139).
We do this in the first row of Figure 4. There does not seem to be any evidence
that the chain has not achieved stationarity.
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Figure 4: Stationary plots and autocorrelation plots for some parameters and hyperparameters

of the model.
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Second row of Figure 4 shows autocorrelation plots for the same parameters. Even
though there does seem strong dependence in the chain for and τ2 and ξ2 (the
plot for the rest looks well), we are very confident of the samples we got since
effective sample sizes range from 887 to 94,144. In addition, approximate Monte
Carlo standard errors can be obtained by dividing the approximated posterior
standard deviations by the square root of the effective sample sizes, giving values
ranging from 0.000002 to 0.0015. These are small compared to the scale of the
approximated posterior expectations of these parameters.

3.4. Posterior summaries

In what follows we summarize the posterior distributions of the parameters of the
model. Panels 1 an 2 of Figure 5 show Monte Carlo summaries to the posterior
densities of each µi and σ2

i , respectively, by type of device; whereas panels 3 and 4
of this figure show Monte Carlo approximations to the the posterior densities of τ2

and ξ2. From the first panel, we see that the 95% (posterior) credible intervals for
bucket and eri have approximately the same coverture; the credible interval length
for d.bouy devices seems to be smaller than the previous two; and finally, there is a
relevant difference in the coverture shown by f.bouy devices. Here we see the effect
of the sample size: when we have more data available in each device, the credible
intervals are more precise. This plot also suggests that the SST detected by f.buoy
devices is slightly greater in comparison with the rest. On the other hand, the
second panel of this figure exhibits how the specific-device variances are around
the same vale (about 1.6) which approximately agrees with the value reported by
Skliris et al. (2011), so we feel confident with the use of the external information we
did. In summary, the model is able to detect a slightly difference in the mean SST
due to a f.dbuoy effect, may be masked by the amount of measurements available
for those devices; group-specific variability seem stable and close to each other,
non perturbed among devices and type of devices.

We present Figure 6 to illustrate the shrinkage, e.i, the fact that the posterior
expected value of each µi is pulled a bit from ȳi. towards xiTβ by an amount
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Figure 5: Panel 1 and 2 show the posterior mean and the 95% credible interval of each µi and

σ2
i by type of device, respectively: bucket (black), eri (red), f.buoy (green), and d.buoy (blue).

Panel 3 and 4 show the marginal posterior distribution of τ2 and ξ2, respectively.
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Figure 6: Shrinkage for µi.

depending of ni (Hoff 2009, p. 140). Notice that the relationship in the first panel
of Figure 6 roughly follows a line with a slope that is less than one, indicating
that high values of ȳi. correspond to slightly less high values of µ̂i, and low values
of ȳi. correspond to slightly less low values of µ̂i. The second panel of 6 shows
the amount of shrinkage as a function of the group-specific sample size. Devises
with low sample sizes get shrunk the most, whereas groups with large sample sizes
hardly get shrunk at all.

Now, we present the main findings about the regressors in the second stage of

Figure 7: The first panel shows the posterior mean and the 95% credible interval of each βi;

the second panel also presents the posterior mean of these parameters.
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the model. Figure 8 display the main features of the posterior distribution of each
βi including the posterior mean and a 95% credible interval. These plots strongly
suggest that the first four regressors are the only ones that have an impact over the
group-specific SST means since their credible intervals are not centered at zero and
have the largest coverture. The impact of the rest of the coefficients, the location
effect of each type of device, is almost imperceptible. This feature is also illustrated
in Figure 8 by looking at the support of the joint posterior distribution of some
pairs of parameters. In summary, the covariates that significantly contribute to
explain the group-specific SST are the ones associated with mean effect due to
the type of device, whereas the impact recorded by the location (latitude and
longitude) of the device is almost null.

Figure 8: Bivariate posterior distribution for some pairs of β.

Finally, recalling that β1 is the mean influence of bucket, we have that β1 + β2,
β1 + β3, and β1 + β4, correspond to the mean impact of eri, f.buoy, and d.bbuoy,
respectively, over the device-specific mean of the average SST (which means that
β2, β3, and β4, represent the difference of the mean effect of eri, f.buoy, and d.bbuoy,
respectively, with respect to the effect of bucket). Having this in mind we have that
the standardized scores of each type of device are: 1.29 (bucket), 0.46 (eri), 1.39
(f.buoy), and 0.56 (d.buoy). Now, we can give us a precise idea of the influence of
each type of device over the device-specific mean of the average SST.

Comunicaciones en Estad́ıstica, julio 2024, Vol. 17, No. 1



110 Juan Sosa

3.5. Model checking

Before proceeding with predicting some temperature predictions, we check the
performance of the model by replicating new data (Gelman et al., 2013, Chap. 6)
and calculating some statistics and then compere them with actual values given in
the data. Figure 9 displays the empirical distribution of the IQR, median, mean,
and standard deviation of replicated data along with the observed value (vertical
line in red) in actual data set and the corresponding. In the corner of each panel is
also shown the value of the corresponding PPP (posterior predictive p-vale) which
can be calculated as

p = P(T (yrep) > T (y) | y)

where yrep is the predictive data and T is the so called test statistic. About the
PPPs there is nothing to be worry about since they are as calibrated as any other
model-based probability (Gelman et al., 2013, p.152). We clearly see that there is
no anomaly in those distributions that make us doubt about the goodness of fit
of our model since the PPPs do not take extreme values and the observed values
are always in the range of the the predicted ones, which are well behaved.
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Figure 9: Model checking using empirical distributions of statistics of predicted data.

3.6. Model prediction

Now we use the model to predict temperatures from a new device. In such a case we
first randomly select a sample in the chain from which we take the corresponding
values of β, τ2, and ξ2. With those values in mind and a given set of covariates,
and considering again the sample distributions, we now sample from σ2

i and µi.

Figure 10 shows the posterior predictive distribution of the SST on a grid 25× 25
points that contains all the observational sites from the smallest value of latitude

Table 1: Mean predicted SST and MSE in the grid by type of device.

bucket eri f.buoy d.buoy
Mean 19.28 19.65 22.87 20.03
MSE 3.07 3.12 21.90 2.91
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Figure 10: Posterior predictive distribution of the SST on a grid that contains all the observa-

tional sites, conditioning on each type device.

and longitude to the largest ones, conditioning on each type device. In addition,
Table 1 presents the mean predicted SST and MSE in the grid by each type of
device. In order to assess the quality of our predictions we consider to references:
First, the mean SST of the 336 measurements reported by the 86 devices, which
is 19.96oC; and second, the mean SST in the same grid reported by the Natio-
nal Oceanic and Atmospheric Administration (NOAA) in 20121, which is 22.44oC.
According to this information, type of devices bucket, eri, and d.buoy (types with
more devices spread along the grid) have a better performance in terms of pre-
diction since all of them are reporting vales close to 19.96oC, and also in terms of
uncertainty since the MSE associated with those prediction is small in comparison
to the MSE associated with f.buoy. On the other hand, the prediction given by
type of device f.buoy (with data from just 5 devices and therefore location in the

1Data available in ftp://ftp.nodc.noaa.gov/pub/data.nodc/pathfinder/Version5.2/2012/

Comunicaciones en Estad́ıstica, julio 2024, Vol. 17, No. 1



112 Juan Sosa

24 26 28 30 32 34 36

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

Prediction bucket

1
4

1
6

1
8

2
0

2
2

2
4

d
e

g
[C

°]

24 26 28 30 32 34 36

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

Prediction eri

1
4

1
6

1
8

2
0

2
2

2
4

2
6

d
e

g
[C

°]

24 26 28 30 32 34 36

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

Prediction f.buoy

0
1
0

2
0

3
0

4
0

5
0

d
e
g
[C

°]

24 26 28 30 32 34 36

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

Prediction d.buoy

1
4

1
6

1
8

2
0

2
2

2
4

2
6

d
e
g
[C

°]

Figure 11: Posterior predictive distribution of the SST on a extended grid that contains all the

observational sites, conditioning on each type device.

grid) is the closest one to the mean SST reported by the NOAA with drawback of
a large MSE.

Finally, to explore the predictive capacity of the model and the data available,
we extend the grid as follows: (1) latitude: from (31.8, 34.5) to (30.0 37.0); and
longitude: from (25.1, 33.8) to (23.0, 37.0). This new grid has 336 × 168 points
on it. Figure 12 shows the actual SST in part of that grid (we just have records
for 5.2% of them) according to the NOAA. Now, Figure 11 shows the posterior
predictive distribution of the SST on the same grid, conditioning on each type
device; in addition, Table 2 presents the mean predicted SST and MSE in the grid
by each type of device. On part of this extended grid (see Figure 12), according
to data of the NOAA in 2012, the mean SST is 20.15oC. We see how in this case

Table 2: Mean predicted SST and MSE in the extended grid by type of device.

bucket eri f.buoy d.buoy
mean 19.39 19.45 23.62 19.76
MSE 3.06 3.53 37.82 3.42
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Figure 12: Mean SST on the extended grid according to the NOAA in 2012.

the best prediction is given by the d.buoy type of device in terms of the mean and
the MSE. We confirm that the best predictions are given by the types of devices
with more devices along the Mediterranean ocean (bucket, eri, and d.buoy), and
how the the f.buoy is overestimating the mean SST (we suspect that the reason
for that is because the devices of this type are mostly located at the north-east
of the sea where sea temperature slightly increases in comparison with the other
location where the other devices are placed).

4. Discussion

Hierarchical models provide a strong alternative to analyze complex and realistic
settings. Their parameter flexibility allow us to describe many characteristics of a
given data set that a regular single-level model does not provide. The ability to
model within and between means and variances yields to better knowledge of the
problem (even if we want to predict future values in any stage). For even more
detail and deep kinds of complexity, this type of models give us many alternati-
ves for generalizations (stages, hyperparameters, probability assumptions, or even
covariates influence as in the model developed here). Given the computational
tools and methods to get samples from the posterior distribution that are availa-
ble (Gibbs sampling, direct sampling, Metropolis-Hastings sampling), hierarchical
models are indeed a tool almost mandatory for any analyst.

For future analysis of the application, we can always thing in more complex mo-
dels in which we take into account more factors to model the temperature, like
interactions with other variables, say for example the interoceanic wind.
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A. Notation

The cardinality of a set A is denoted by |A|. If P is a logical proposition, then
1 {P} = 1 if P is true, and 1 {P} = 0 if P is false. ⌊x⌋ denotes the floor of x,
whereas [n] denotes the set of all integers from 1 to n, i.e., {1, . . . , n}. The Gamma
function is given by Γ(x) =

∫∞
0

ux−1 e−u du. Matrices and vectors with entries
consisting of subscripted variables are denoted by a boldfaced version of the letter
for that variable. For example, x = (x1, . . . , xn) denotes an n × 1 column vector
with entries x1, . . . , xn. We use 0 and 1 to denote the column vector with all entries
equal to 0 and 1, respectively, and I to denote the identity matrix. A subindex
in this context refers to the corresponding dimension; for instance, In denotes the
n× n identity matrix. The transpose of a vector x is denoted by xT; analogously
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for matrices. Moreover, if X is a square matrix, we use tr(X) to denote its trace

and X−1 to denote its inverse. The norm of x, given by
√
xTx, is denoted by ∥x∥ .

Now, we present the form of some standard probability distributions used in this
article:

Multivariate normal:

A d × 1 random vector X = (X1 . . . , Xd) has a multivariate Normal distri-
bution with parameters µ and Σ, denoted by X | µ,Σ ∼ Nd(µ,Σ), if its
density function is

p(x | µ,Σ) = (2π)−d/2 |Σ|−1/2 exp
{
− 1

2 (x− µ)TΣ−1(x− µ)
}
.

Gamma:

A random variable X has a Gamma distribution with parameters α, β > 0,
denoted by X | α, β ∼ G(α, β), if its density function is

p(x | α, β) = βα

Γ(α)
xα−1 exp {−βx} , x > 0 .

Inverse Gamma:

A random variable X has an Inverse Gamma distribution with parameters
α, β > 0, denoted by X | α, β ∼ IG(α, β), if its density function is

p(x | α, β) = βα

Γ(α)
x−(α+1) exp {−β/x}, x > 0 .
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