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Abstract

This paper essentially considers Gaussian process (GP) methods for regression
analysis in longitudinal studies. The model is indeed a reasonable choice for des-
cription and prediction of phenomena involving repeated measurements in which
there is evidence of heterogeneity among batches of measurements. First, we provi-
de all the theoretical and practical details behind our modeling strategy. Then, we
study the main properties of the model using simulated data. And finally, we apply
analyze an AIDS clinical study developed by the AIDS Clinical Trials Group.
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Resumen

Este documento considera métodos de proceso gaussiano (GP) para el análisis de
regresión en estudios longitudinales. El modelo es una elección razonable para la
descripción y predicción de fenómenos que implican mediciones repetidas en las
que hay evidencia de heterogeneidad entre lotes de mediciones. Primero, propor-
cionamos todos los detalles teóricos y prácticos detrás de nuestra estrategia de
modelado. Luego, estudiamos las principales propiedades del modelo utilizando
datos simulados. Y finalmente, aplicamos y analizamos un estudio cĺınico sobre el
SIDA desarrollado por el Grupo de Ensayos Cĺınicos sobre el SIDA.

Palabras clave: Inferencia Bayesiana; procesos gaussianos; análisis de datos lon-
gitudinales; análisis de regresión.
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1. Introduction

A hierarchical Gaussian process (GP) mixture model for regression analysis com-
bines the flexibility and non-parametric nature of Gaussian processes with the
ability to model complex hierarchical data structures through a mixture model
approach. This framework is particularly useful for capturing heterogeneity and
complex dependencies in data, making it a powerful tool for various applications
such as longitudinal studies, time series analysis, and spatial data modeling. The
following references will provide the reader with a deeper understanding of the
theory, implementation, and applications of hierarchical GP mixture models in
regression analysis: Neal (1997), Snelson and Ghahramani (2005), Williams and
Rasmussen (2006), Titsias and Lawrence (2010), Shi and Choi (2011), and Hens-
man et al. (2013).

This paper is inspired in findings and methods shown in Shi et al. (2005) and
essentially considers GP methods for regression analysis in longitudinal studies.
Our purpose here is three-folded. First, we provide all the theoretical and practical
details behind our modeling strategy (we also provide brand new R code regarding
every empirical finding). Then, we study the main properties of the model using
simulated data. And finally, we apply analyze an AIDS clinical study developed
by the AIDS Clinical Trials Group (ACTG).

Longitudinal data analysis takes place when several experimental units are ob-
served repeatedly over time measuring a response variable (dependent or output
variable) in accordance with one or several covariates (independent or input varia-
bles), which may or may not be time-dependent. Such data can often be regarded
as consisting of batches of measurements (set of values obtained as a result of
experimental replication). An experimental unit may have one or several batches
attached to it depending on how many times the experiment was carried out with
such unit. The main purpose of the analysis is to identify, describe and predict
the evolution (mean tendency) of the response variable and to determine how it
is affected by the covariates.

Two major challenges arise when a GP regression model is applied to a large
dataset with repeated measurements: (1) possible systematic heterogeneity among
the different batches and (2) the requirement to invert a covariance matrix with
dimension equal to the sample size of the training dataset. For dealing with the
above two problems, Shi et al. (2005) propose a hierarchical GP mixture model for
regression analysis, in which each batch of observations comes from a batch-specific
GP.

This paper is structured as follows. In Section 2, we give an overview of the problem
and the main ideas about hierarchical mixture models for regression. In Section
3, we recall some ideas about Bayesian inference in the context of mixtures. In
Section 4, we describe the algorithm used in Section 5 and 6 to perform posterior
inference using simulated and real data. Finally, in Section 7, we discuss our main
findings.
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2. Hierarchical mixture models for regression

In general, suppose that there areM different batches and Nm observations in the
m-th batch. Observations are assumed to be independent among different batches.
The response variable ymn in the m-th batch is then modeled by

ymn = fm(xmn) + ϵmn, ϵmn
iid∼ N(0, σ2), (1)

m = 1, . . . ,M, n = 1, . . . , Nm,

where xmn = (xmn1, . . . ,xmnQ) is a Q-dimensional vector of covariates and fm(·)
is a nonlinear function of xmn. Shi et al. (2005) consider a model in which fm(·)
is assigned a finite mixture of GP prior, i.e.,

fm(xmn) ∼
K∑

k=1

πkGP(θk)

where K is the given fixed number of components in the mixture, and πk is the
weight corresponding to the k-th component. This model can be regarded as a
hierarchical model by independently introducing latent indicator variables zm as
follows:

fm(xmn) | zm = k ∼ GP(θk), m = 1, . . . ,M, n = 1, . . . , Nm,

P (zm = k) = πk, k = 1, . . . ,K.

Finally, it is assumed that given zm, all the components in the mixture have the
same structure but with different values of the parameter θk. Formally, for each
m and each n, fm(xmn) | zm = k has a multivariate normal distribution with zero
mean and covariance function

C(xmi,xmj | θk) = vk exp

{
−1

2

Q∑
q=1

wkq(xmiq − xmjq)
2

}
+ak0+ak1

Q∑
q=1

xmiqxmjq,

(2)
where θk = (wk1, . . . , wkQ, vk, ak0, ak2, σ

2
k). Therefore, given zm, the m-th output

vector ym = (ym1, . . . , ymNm
), has a normal distribution with mean and covariance

matrix given by

(fm(xm1), . . . , fm(xmNm)) and Ψ(θk) = C(θk) + σ2
kINm ,

where C(θk) is an Nm ×Nm matrix whose ij-th element is given by (2), and INm

is the Nm ×Nm identity matrix.

3. Bayesian inference

Let Θ = (θ1, . . . ,θK) and π = (π1, . . . , πK), and let D = {(ym,Xm) : m =
1, . . . ,M} be the collection of training data with Xm = (xT

m1, . . . ,x
T
mNm

)T.Then,
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the posterior distribution of the unknown parameters given the training data D is
given by

p(Θ, π | D) ∝ p(D | Θ, π) p(Θ, π) ,

where

p(D | Θ, π) =
M∏

m=1

K∑
k=1

p(ym | θk,Xm).

Also, it is assumed that Θ and π are independent a priori, and the θk are inde-
pendent and identically distributed, so that

p(Θ, π) = p(π)

K∏
k=1

p(θk).

The prior distributions for the rest of parameters are placed as in Rasmussen
(1996). Thus, each wkq is assigned an inverse gamma distribution:

wkq ∼ IG

(
α

2
,
α

2µ

)
, k = 1, . . . ,K, q = 1, . . . , Q.

Small values of α produce vague priors. The hyperparameter µ is assumed to take
the value µ0Q

2/α, with α = 1 and µ0 = 1. The priors on log(σ2
k), a0, and a1 are

taken as N(0, 32) and the prior on log(v0) is taken as N(0, 1), which correspond to
fairly vague prior distributions. Finally, as in the general mixture model settings,
π is assigned a Dirichlet distribution, i.e., π ∼ Dir(1, . . . , 1).

4. Algorithm

Instead of generating a sample of (Θ,π) from its posterior directly, the implemen-
tation is much simpler if the latent variables z = (z1, . . . , zM ) are simulated along
with the unknown parameters by adopting a Hybrid Monte Carlo algorithm as in
Duane et al. (1987). The algorithm consists of a Gibbs algorithm in Step (a) and
a Hybrid Monte Carlo algorithm in Step (b). This procedure which referred to as
Hybrid MCMC, given in the Appendix of Shi et al. (2005), is defined as follows:

Step (a) Sampling from p(z | D,Θ):

Let ck be the number of observation for which zm = k, over allm = 1, . . . ,M .
One sweep of the procedure for sampling z and π is as follows:

1. Sample zm from p(zm | y,Θ,π) ∝ πkp(ym | θk);

2. Sample (π1, . . . , πk) from p(π1, . . . , πk) ∝ D(1 + c1, . . . , 1 + cK).

Step (b) Sampling from p(Θ | D, z):
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Let p(θk | D, z) ∝ exp {−E} where E is called potential energy. Since, the θ
are independent a priori, then the conditional density function of Θ is

p(Θ | D, z) =
K∏

k=1

p(θk | D, z),

where
p(θk | D, z) ∝ p(θk)

∏
{m:zm=k}

p(ym | θk,Xm). (3)

Thus, θk are conditionally independent given z and we can deal with each
θk separately.

One sweep of a variation of the Hybrid MC algorithm is as follows:

1. Starting from the current state (θ,ϕ), calculate the new state (θ(ϵ),ϕ(ϵ))
by the following leapfrog steps with step size ϵ:

ϕi(ϵ/2) = ϕi −
ϵ

2

∂E
∂θi

(θ),

θi(ϵ) = θi +
ϵ

λ
ϕi(ϵ/2),

ϕi(ϵ) = ϕi(ϵ/2)−
ϵ

2

∂E
∂θi

(θ(ϵ)),

where ∂E/∂θi is the first derivative of E evaluated at θ.

2. The new state (θ∗,ϕ∗) is such that

(θ∗,ϕ∗) =

{
(θ(ϵ),ϕ(ϵ)), with prob. min{1, p(θ,ϕ)/p(θ(ϵ),ϕ(ϵ))};
(θ,−ϕ), otherwise,

where p(θ,ϕ) = exp {−(E +K)} with K = 1
2

∑
k ϕk/λ.

3. Generate υi from the standard Gaussian distribution, and update ϕi to
ξϕ∗i +

√
1− ξ2υi.

As suggested in Rasmussen (1996), we set ϵ = 0.5N
−1/2
m , λ = 1, and ξ = 0.95.

The algorithm above does not meet the definition of a cycle, since it is a deter-
ministic combination of Gibbs and Metropolis steps that would not themselves
converge if applied individually. But each of the components does preserve the
stationary distribution of the chain, so, provided the hybrid chain is aperiodic and
irreducible, convergence can be obtained (Carlin and Louis, 2000, Sec. 5.4.4).

Shi et al. (2005) argue that in Step (b) the computational burden is much less
than that incurred by modelling the data-set by a single GP regression model
since the right-hand side of (3) requires the inversion of a covariance matrix of
dimension Nm, which is generally much smaller than the total sample size of
N = N1 + . . .+NM .
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5. Simulation

Shi et al. (2005) apply these ideas to study standing-up manoeuvres made by pa-
raplegic patients. The authors consider different settings to implement the model
and, in general, they get fairly good results in terms of characterization and pre-
diction. Here, we emulate such methodology by considering the exactly the same
data structure in a simulation study.

To perform Bayesian inference under this model, we generate data according to
the model (1) with one independent variable (Q = 1), three batches (M = 3),
and σ = m2/100, m = 1, 2, 3. We consider different variances in order to produce
heterogeneity among the batches. We consider input values drawn i.i.d. from a
uniform distribution over the interval (−3, 3). For each m, the true regression
function is given by

f(x) = 0.3 + 0.4x+ 0.5 sin(2.7x) +
1.1

1 + x2
.

See the technical report by Radford Neal, which is available on-line from http:

//www.cs.toronto.edu/~radford/mc-gp.abstract.html.

We generate 200 observations per experimental unit according to model (1). To
simulate unbalanced data sets in the batches, which is a main characteristic of the
structure in this setting, repeated measures are randomly removed with a rate of
rm = 0.2. As in Shi et al. (2005), from the whole data-set, we randomly select
about half of the data points from the batches as training data; the rest are used
as test data. The sample sizes of the training data are 27, 25 and 29 respectively
for the three batches. Figure 1 displays the simulated data. It seems that there is
evidence of heterogeneity between different batches. This heterogeneity is not just
random variability because we obtain better results by fitting a mixture rather
than a single GP.
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Figure 1: Simulated data according to model 1. Training data in black and test data in red.

We place the prior distributions and pick the hyperparameters as mentioned in
section 3. We assume that the number of components in the mixture is K = 2
(results with K = 3 are very similar). We use the Hybrid MCMC algorithm with
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T = 1200 iterations to generate samples from the posterior distribution. The chains
corresponding to the parameters in the first component achieve convergence really
quickly; on the other hand, the chains for the parameters in the second compo-
nent achieve convergence after approximately iteration 100 approximately. As in
Shi et al. (2005), we discard the first 800 iterations. In order to have approximately
independent draws, we select one sample every other 5 iterations, and as conse-
quence, a total of 81 samples (for each parameter in the respective component) are
selected altogether. Those 81 samples are approximately independent and identi-
cally distributed according to the corresponding posterior distribution and form
the basis of posterior inference.

Table 1 summarizes the posterior distribution of all the parameters in the mix-
ture. We present the correspondent posterior means and 95% posterior credible
intervals. Note that the posterior estimate of the weights in the mixture π1 and π2
are 0.19 and 0.81, respectively, which strongly suggests that most of the inference
work is based on the parameters of the second component. This fact also explains
why the chains of the parameters in the second component converge faster than
in the first one. Notice also that the posterior estimate of σ2 (variance of the error
term in the model) is 2.63 in the fist component and 0.50 in the second one, which
clearly establishes some degree of heterogeneity captured by the model.

Par. Mean SD Q2.5% Q50% Q97.5%
w1 5.45 0.78 3.97 5.34 7.09
v1 5.10 0.92 3.84 4.89 6.91
a0,1 1.46 1.04 0.34 1.13 3.49
a1,1 -0.67 0.35 -1.19 -0.70 0.09
σ2
1 2.63 1.45 0.60 2.27 5.11

w2 0.83 0.04 0.77 0.86 0.89
v2 1.35 0.02 1.32 1.35 1.38
a0,2 2.62 0.04 2.56 2.62 2.67
a1,2 2.85 0.04 2.81 2.82 2.91
σ2
2 0.50 0.02 0.49 0.50 0.53

π1 0.19 0.15 0.00 0.16 0.56
π2 0.81 0.15 0.44 0.84 1.00

Table 1: Posterior summaries of all the parameters in the mixture.

To measure the performance of the model and the algorithm, the actual output
values of the test data are compared with the predictions. Shi et al. (2005) compute
the prediction for a new set of test inputs x∗ in the m-th batch, as

ŷ∗m =
1

T

T∑
t=1

ŷ∗(t)m ,

where ŷ
∗(t)
m = ψm(x∗)TΨ(θ(t))−1y with ψm(x∗) = (C(x∗,xm1), . . . , C(x

∗,xmNm
)).

The variance associated with the prediction is calculated similarly, as

σ̂∗2
m =

1

T

T∑
t=1

σ̂∗2(t)
m +

1

T

T∑
t=1

(ŷ∗(t)m )2 − (ŷ∗m)2,
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where σ̂
∗2(t)
m = C(x∗,x∗)− ψm(x∗)TΨ(θ(t))−1ψm(x∗). The predictive variance is

then σ̂∗2
m + σ̂2.

The results are plotted in Figure 2. We get that the root mean squared error
between the prediction and the true test value is 0.26, and that the related corre-
lation coefficient is 0.97. From those summary statistics and from this Figure, the
fit seems to be very good.
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Figure 2: Test data (dots in red), and prediction of the test data (solid line in black) along with
the corresponding 95% confidence intervals (dashed line in blue).

6. Application

In this section a hierarchical GP model is applied to an AIDS clinical study de-
veloped by the AIDS Clinical Trials Group1 (ACTG). With this group, Fischl
et al. (2003) evaluated two different 4-drug regimens containing indinavir with
either efavirenz or nelfinavir for the treatment of 517 patients with advanced HIV
disease (i.e., patients with high HIV-1 RNA levels and low CD4 cell counts).

This study was a randomized, open-label study; it was initially planned to last
72 weeks but later increased to 120 weeks beyond the enrollment of the last sub-
ject. The randomization was carried out by using a permuted block design and
was stratified according to CD4 cell count and HIV-1 RNA level at screening, as
well as previous antiretroviral experience. In addition, clinical assessments, HIV-1
RNA measurements, CD4 cell counts, and routine laboratory tests were perfor-
med before study entry, at the time of study entry, at weeks 4 and 8, and every
8 weeks thereafter. More details about design, subjects, treatments and outcome
measurements of this study are given in Fischl et al. (2003, p. 626-627).

The hierarchical GP model 1 was used to model the CD4 cell count, which is an
essential marker for assessing immunologic response of an antiviral regimen, in
arms 1 and 2 of the three treatment arms; notice that in this case treatment arms
correspond to the batches in the model. Patients might not exactly follow the de-

1Visit the website https://actgnetwork.org/ for more information about the group.
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signed schedule, and missing clinical visits for CD4 cell measurements frequently
occurred, which makes this data set2 (named ACTG 388) a typical longitudinal
data set. The main interest of the analysis presented in this section is to characteri-
ze the CD4 cell count trajectories over the treatment period by using the proposed
estimation method project. Additional analyses of this and other trajectories, as
well as more scientific findings of the study, can be found in Fischl et al. (2003,
p. 627), Park and Wu (2005, p. 3774), and Wu and Zhang (2006, Chapters 5, 7, 8
and 10), Sosa and Diaz (2012).

Figure 3 shows the CD4 cell counts for some of the 166 patients during the 120
weeks of treatment. This plot indicates that the individual CD4 cell counts are
quite noisy over time; it is not easy to see any pattern, and therefore it is not
possible to establish if the antiviral treatment was effective (i.e., CD4 cell counts
profiles should considerably increase).
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Figure 3: CD4 cell counts considering arms 1 and 2 of the study. Training data in black and
test data in red.

In this application, we are just considering a random sample of 133 and 139 ob-
servations in treatment arms 1 and 2, respectively. Once again, from the whole
data-set, we randomly select data points from the batches as training data; the
rest are used as test data. The sample sizes of the training data are 108 and 117
respectively for the two batches.

We place the prior distributions and pick the hyperparameters as mentioned in
section 3. We assume that the number of components in the mixture is K = 2 since
we are dealing with two treatment arms, and use the Hybrid MCMC algorithm
with T = 1200 iterations to generate samples from the posterior distribution. The
chains corresponding to the parameters in the first component achieve convergen-
ce really quickly; on the other hand, the chains for the parameters in the second
component achieve convergencee after approximately iteration 400 approximately.
Again, we discard the first 800 iterations and in order to have approximately
independent draws, we select one sample from every other 5 iterations, and as
consequence, a total of 81 samples (for each parameter in the respective compo-

2Available in http://www.urmc.rochester.edu/biostat/people/faculty/wusite/datasets/

data/ACTG388Data1Arm.cfm.
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nent) are selected altogether. Those 81 samples are approximately independent
and identically distributed according to the corresponding posterior distribution
and form the basis of posterior inference.

Table 2 summarizes the posterior distribution of all the parameters in the mix-
ture. We present the correspondent posterior means and 95% posterior credible
intervals. Note that the posterior estimate of the weights in the mixture π1 and
π2 are 0.34 and 0.66, respectively. Notice also that the posterior estimate of σ2

(variance of the error term in the model) is 1.87 in the fist component and 2.54
in the second one, which clearly establishes some degree of heterogeneity captured
by the model.

Par. Mean SD Q2.5% Q50% Q97.5%
w1 1.31 0.76 0.24 1.54 2.42
v1 1.98 0.58 1.14 1.99 2.81
a0,1 1.33 0.34 0.70 1.36 1.95
a1,1 -0.85 0.88 -2.12 -0.87 0.55
σ2
1 1.87 0.84 0.29 2.06 2.99

w2 4.71 0.29 4.12 4.77 5.11
v2 1.65 0.39 0.58 1.79 2.07
a0,2 2.58 0.22 2.20 2.54 3.07
a1,2 -0.37 0.26 -1.05 -0.34 0.20
σ2
2 2.54 0.09 2.37 2.54 2.70

π1 0.34 0.28 0.01 0.24 0.95
π2 0.66 0.28 0.05 0.76 0.99

Table 2: Posterior summaries of all the parameters in the mixture.

To measure the performance of the model and the algorithm, the actual output
values of the test data are compared with the predictions as before. Figure 4
displays the estimated curve. Note that the estimated population mean function
is smooth. Here we can see that it increased sharply during the first 40 weeks, and
continued to increase at a slower rate until about week 100. This shows that with
this anti-viral treatment, the overall CD4 counts increased dramatically during the
first 40 weeks, but the effect of the drug therapy faded over time.

7. Discussion

In what follows we point out the main characteristics and findings of the metho-
dology described in this project:

This model is indeed a reasonable choice (even better than network models
according to Shi et al. 2005) for description and prediction of phenomena
involving repeated measurements in which there is evidence of heterogeneity
among batches.

The number of mixture components K is assumed as fixed, and it is deter-
mined empirically in practice.
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Figure 4: Test data (dots in red), and prediction of the test data (solid line in black) along with
the corresponding 95% confidence intervals (dashed line in blue).

The version of the Hybrid MCMC algorithm is more efficient than the stan-
dard algorithm used in a regular GP for regression.

The approach is robust in the sense that when different values of the hyper-
parameters are chosen, the final results are almost the same; the sample size
is generally quite large, so the data dominate the prior.

Future work to improve this methodology should be done in many directions, but
we consider that the most important is to tackle the problem of assessing the value
of K and parameter estimation at the same time.
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A. Notation

The cardinality of a set A is denoted by |A|. If P is a logical proposition, then
1 {P} = 1 if P is true, and 1 {P} = 0 if P is false. ⌊x⌋ denotes the floor of x,
whereas [n] denotes the set of all integers from 1 to n, i.e., {1, . . . , n}. The Gamma
function is given by Γ(x) =

∫∞
0
ux−1 e−u du. Matrices and vectors with entries

consisting of subscripted variables are denoted by a boldfaced version of the letter
for that variable. For example, x = (x1, . . . , xn) denotes an n × 1 column vector
with entries x1, . . . , xn. We use 0 and 1 to denote the column vector with all entries
equal to 0 and 1, respectively, and I to denote the identity matrix. A subindex
in this context refers to the corresponding dimension; for instance, In denotes the
n× n identity matrix. The transpose of a vector x is denoted by xT; analogously
for matrices. Moreover, if X is a square matrix, we use tr(X) to denote its trace

and X−1 to denote its inverse. The norm of x, given by
√
xTx, is denoted by ∥x∥ .

Now, we present the form of some standard probability distributions used in this
article:

Multivariate normal:

A d × 1 random vector X = (X1 . . . , Xd) has a multivariate Normal distri-
bution with parameters µ and Σ, denoted by X | µ,Σ ∼ Nd(µ,Σ), if its
density function is

p(x | µ,Σ) = (2π)−d/2 |Σ|−1/2 exp
{
− 1

2 (x− µ)TΣ−1(x− µ)
}
.

Inverse Gamma:

A random variable X has an Inverse Gamma distribution with parameters
α, β > 0, denoted by X | α, β ∼ IG(α, β), if its density function is

p(x | α, β) = βα

Γ(α)
x−(α+1) exp {−β/x}, x > 0 .

Dirichlet:

A K × 1 random vector X = (X1, . . . , XK) has a dirichlet distribution
with parameter vector α = (α1, . . . , αK), where each αk > 0, denoted by
X | α ∼ Dir(α), if its density function is

p(x | α) =

{
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)

∏K
k=1 x

αk−1
k , if

∑K
k=1 xk = 1;

0, otherwise.
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