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Abstract

In this paper, we illustrate in-depth several Bayesian models for time series data.
To do so, we consider a dataset about weekly change series of the U.S. 3-year
Treasury constant maturity interest rate from March 18, 1988 to September 10,
1999. We consider two fully Bayesian approaches: One of them static, based on
an retrogressive model of order 3 as in Prado and West (2010), and other two
time-varying models, based on the dynamic framework given in West and Harrison
(1999). One of these dynamic models is specially design for detecting outliers. Both
alternatives are sensible ones, but due to the nature of this dataset, the dynamic
modeling approach is more appealing since it gives a complete characterization of
the response.

Keywords: Autoregressive models; Bayesian inference; time series data; time-
varying modeling..

Resumen

En este documento, ilustramos en profundidad varios modelos Bayesianos para
datos de series temporales. Para ello, consideramos un conjunto de datos sobre la
serie de cambios semanales de la tasa de interés de la madurez constante de los
bonos del Tesoro de EE. UU. a 3 años, desde el 18 de marzo de 1988 hasta el
10 de septiembre de 1999. Consideramos dos enfoques completamente Bayesianos:
uno de ellos estático, basado en un modelo autorregresivo de orden 3 como en
Prado and West (2010), y otros dos modelos de variación temporal, basados en
el marco dinámico de West and Harrison (1999). Uno de estos modelos dinámicos
está especialmente diseñado para detectar valores at́ıpicos. Ambas alternativas son
sensatas, pero debido a la naturaleza de este conjunto de datos, la alternativa de
modelamiento dinámico es más atractiva ya que proporciona una caracterización
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completa de la respuesta.

Palabras clave: Modelos autorregresivos; inferencia Bayesiana; datos de series
temporales; modelado de variación temporal..

1. Introduction

The aim of our study is to demonstrate the effectiveness of two robust Bayesian
methodologies for modeling time series data. One approach employs a static model,
specifically a third-order autoregressive model as described in Prado and West
(2010). The other utilizes a time-varying framework outlined in West and Harrison
(1999), which offers dynamic capabilities. Notably, one of these dynamic models
is tailored for outlier detection, enhancing its utility in anomaly identification.
While both approaches are valid, the dynamic model is particularly compelling for
our dataset due to its ability to provide a comprehensive characterization of the
response variable throughout time.

On the one hand, Bayesian autoregressive models represent a powerful tool for
analyzing time series data within a probabilistic framework. These models extend
the classical autoregressive models by incorporating Bayesian principles, allowing
for the inclusion of prior beliefs and uncertainty in model parameters. The key idea
behind Bayesian autoregressive models is to model each observation in a time se-
ries as a function of its past observations, where the dependencies are captured by
autoregressive terms. Unlike traditional frequentist approaches, Bayesian methods
offer flexibility in handling complex data patterns and incorporating prior informa-
tion, making them particularly useful when dealing with small or sparse datasets.
By leveraging Bayesian inference techniques such as Markov chain Monte Carlo
(MCMC) sampling, these models can provide not only point estimates but also
full posterior distributions of parameters, enabling more nuanced interpretation
and uncertainty quantification in time series analysis.

On the hand, Bayesian time-varying autoregressive (TVAR) models, as developed
within the framework of West and Harrison (1999), offer a sophisticated approach
to modeling time series data by allowing parameters to evolve over time. Unlike
traditional autoregressive models where coefficients remain constant, TVAR mo-
dels recognize that relationships in time series data can change dynamically. West
and Harrison’s framework integrates Bayesian inference to estimate time-varying
parameters, enabling the modeling of non-stationary processes and capturing shifts
in relationships between variables over different time periods. This flexibility is cru-
cial in applications such as econometrics, where economic relationships can evolve
due to changing policies or market conditions. Again, by employing techniques
like stochastic search variable selection (SSVS) and Markov chain Monte Carlo
(MCMC) methods, Bayesian TVAR models can identify significant time-varying
patterns and provide probabilistic forecasts that account for uncertainty in both
past observations and future predictions. This makes them a powerful tool for re-
searchers and practitioners seeking to understand and predict complex temporal
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dynamics in various fields including economics, social sciences, and environmental
studies.
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Figure 1: Time series of the detrended weekly change series of the U.S. 3-year Treasury constant
maturity interest rate from March 18, 1988 to September 10, 1999.

Here, we illustrate our modeling strategies using the detrended weekly change
series of the U.S. 3-year Treasury constant maturity interest rate from March 18,
1988 to September 10, 1999. The corresponding plot of the data yt after subtracting
the mean is shown in Figure 1. We have T = 600 equally spaced measurements in
total. This series does not seem to exhibit any trend and appear to be stationary
(which is confirm below), so we decide to not differentiate the data again.

This paper is structured as follows. In Section 2, we fit an autoregressive model of
order 3 to out time series data. In Section 3, we go beyond our previous approach
and consider a regular time-varying model. In Section 4, we extend the time-
varying model in order to detect outliers in the series. Finally, in Section 7, we
discuss our main findings.

2. Autoregressive model

Firstly, we consider the model

yt = ϕ1yt−1 + ϕ2yt−2 + ϕ3yt−3 + ϵt, ϵt
iid∼ N(0, v) (1)

which corresponds to a AR model with order p = 3. We fit a Bayesian AR(3)
model to the data using a prior of the form p(ϕ, v) ∝ 1/v with ϕ = (ϕ1, ϕ2, ϕ3)

′,
and the conditional likelihood

p(y | y1:p) =
T∏

t=p+1

N(yt | f ′tϕ, v) = N(y | F′ϕ, vIn) (2)

where y = (yp+1, . . . , yT )
′ (the first three observations being conditioned upon for

initial values), ft = (yt−1, yt−2, yt−3)
′, t = (p+1) : T , F = [fp+1, . . . , fT ], and In is
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the n × n identity matrix with n = T − p. Under this conditions, we are dealing
with a linear model and we can apply standard theory (Prado and West, 2010, pp.
19-22).

Combining likelihood 2 with the reference prior p(ϕ, v), we are able to obtain
samples from the posterior distribution of (ϕ, υ) using direct sampling as follows:
first, sample v from a IG((n−p)/2, (n−p)s2/2), and then for each v in the previous

step sample ϕ from a N(ϕ̂mle, v(FF
′)−1), where (n − p)s2 is the residual sum

of squares (which leads to v̂mle = 0.013 the MLE of v), ϕ̂mle = (FF′)−1Fy =
(0.227, 0.006, 0.113)′ is the MLE of ϕ, and n = T − p = 597. Posterior summaries
for 4,000 samples from p(ϕ, v | y) are provided in Table 1. We see that the MLEs
and the posterior estimates of ϕ and v are very similar (this is expected since we
are considering a non-informative prior).

Parameter ϕ1 ϕ2 ϕ3 v
Mean 0.227 0.004 0.113 0.013
SD 0.041 0.042 0.041 0.001
Q2.5% 0.146 -0.080 0.031 0.012
Q97.5% 0.308 0.086 0.192 0.014

Table 1: Posterior summaries of ϕ and v.

Now, we fix ϕ = ϕ̂bayes = (0.227, 0.004, 0.113)′ to explore the model based on
this posterior estimate. The corresponding characteristic polynomial is Φ(u) =
1 − 0.227u − 0.004u2 − 0.113u3 leads to one pairs of complex roots and one real
root, whose corresponding modulus and wavelength (ri, λi) (in order of decreasing
modulus) are: (0.575,NA) and (0.443, 3.182). Note that the largest modulus co-
rresponds to the real root and that the high frequency term is capturing short run
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Figure 2: Left and middle: histogram of the posterior samples of the largest reciprocal charac-
teristic modulus (left) and histogram of the posterior samples of the second largest reciprocal
characteristic modulus (right). The posterior mean (blue), 2.5% and 97.5% quantiles (also blue),
and the number 1 (red) are shown in each histogram. Right: histogram of the posterior samples
of the period associated to the complex reciprocal pair. The posterior mean and 2.5% and 97.5%
quantiles are also shown in blue.
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oscillations of low magnitude rather than meaningful cyclical components.

Then, we consider posterior inference about the modulus and the period of the re-
ciprocal roots. As in the previous paragraph, almost every posterior sample (3,996
out of 4,000) of ϕ gives one pair of complex roots and one real root; in each one of
those cases the modulus of the real root happens to be greater than the modulus
associated with the complex pair. In summary, the largest modulus corresponds to
the modulus of the real root whereas the de second largest modulus corresponds
to the modulus of the complex pair.

The left and middle panels of Figure 2 display the posterior distribution of the
largest and second largest reciprocal characteristic modulus plotted in the same
scale. These distributions are centered at 0.568 and 0.434, respectively, which is
consistent with what we get by fixing ϕ = ϕ̂bayes. Moreover, we see that the
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Figure 3: Residual analysis: Time series plot (top), ACF (middle), Q-Q plot (bottom left), and
histogram (bottom right) of the residuals obtained from fitting model 1.
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Figure 4: Forecasts (thick black) of the change of the U.S. 3-year Treasury constant maturity
interest rate after the week of September 10, 1999 (dotted line in red) along with 95% credible
intervals (dashed lines in blue).

posterior probability that the largest reciprocal characteristic root is less than 1
is 100% (no value was above the unity which corresponds to the red line in the
histogram); the same probability for the second largest reciprocal characteristic
root is also 100%. These quantities confirm that the process is stationary. Finally,
for completeness we include in the last panel of Figure 2 the posterior distribution
of the period associated to the complex reciprocal pair. As expected it is centered at
3.183, which corresponds to the period associated to the complex pair of reciprocal
roots above.

Again, we fix ϕ = ϕ̂bayes = (0.227, 0.004, 0.113)′ but this time to perform a residual
analysis of the model. Figure 3 shows a residual analysis of the residuals after fitting
model 1. Note that in general the series of the residuals does not exhibit either
a persistent trend or a seasonal pattern, but around certain times, in particular
around weeks 65, 74, 201, 323, 418 (lines in blue), where residuals take the largest
values, we recognize an explicit pattern which clearly suggests that the model is
not able to detect outliers effectively. Even though, the ACF does not reveal any
significant correlation in any lag of the series of the residuals, looking at the Q-Q
plot and the histogram of the residuals, because of the heavy tails we suspect
that the residuals could not correspond to a exactly i.i.d. sample from a normal
distribution.

We perform the forecasting by successively simulating future values yT+h according

to a normal distribution with mean
∑p

j=1 ϕ
(m)
j yT+h−j and variance v(m) over

h = 1 : 10, where ϕ
(m)
j and v(m) correspond to the m-th posterior sample of ϕj

and v, respectively, and substituting sampled values as regressors for the future
(Prado and West, 2010, p. 44). Figure 4 exhibits the forecasts for the next 10
weeks. We highlight how the predicted values go towards zero relatively quick.
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Figure 5: Log-likelihood function of δ. The value of δ that maximizes this function (dotted line
in red) in a grid of 1,000 points from 0.97 to 1 is δ = 0.9998.

We conclude that model (1) is not fully appropriate to describe these data because
the model is not characterizing important features of the series, such as the mean
evolution of the data and the volatility of the variability. This is the case because
model (1) is not able to identify additive outliers; as a consequence the fitted values
do not accurately describe the mean behavior of the series (which explains why
the 95% credible interval of the forecast in Figure 4 is that wide) and the variance
of the residuals turns out to be a under estimate of the true variability involved in
the data (which also justifies the patterns around the times with more volatility
and the heavy tails detected in the residual analysis).

3. Time-varying autoregressive model

Now we consider a time-varying autoregressive model of order p = 3 given by

yt = ϕt,1yt−1 + ϕt,2yt−2 + ϕt,3yt−3 + ϵt, ϵt
iid∼ N(0, vt), (3)

ϕt = ϕt−1 + ηt, ηt
iid∼ N(03,Wt(δ)),

where ϕt = (ϕt,1, ϕt,2, ϕt,3)
′ and δ is a discount factor with δ ∈ (0, 1]. We start by

noticing that model (3) is a TVAR model, see West and Harrison (1999, Sec. 9.6)
and Prado and West (2010, Ch. 5) for details, which can be written in standard
DLM notation as:

yt = F′
tϕt + ϵt, ϵt

iid∼ N(0, vt), (4)

ϕt = Gtϕt−1 + ηt, ηt
iid∼ N(03,Wt(δ)),
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where

Ft = (yt−1, yt−2, yt−3)
′, ϕt = (ϕt,1, ϕt,2, ϕt,3)

′,

Gt ≡ G = I3, Wt(δ) ≡ Wt =
1− δ

δ
Pt,

with I3 the 3 × 3 identity matrix and Pt = GtCt−1G
′
t = Ct−1 (since Gt = I3

for all t). Here and in what follows we use the standard DLM notation used by
West and Harrison (1999), in particular that corresponding to the Kalman Filter
(West and Harrison, 1999, Theorem 4.1, p. 103 and Theorem 4.3, p. 109) and the
discount factors (Prado and West, 2010, Sec. 4.3.6, p. 130 and Sec. 4.3.7, p.131).

We assume that vt ≡ v for all t with v unknown and therefore we implement the
Kalman Filter according to the formulae given in West and Harrison (1999, Sec.
4.6, p. 111). First of all, we select the appropriate value of δ before performing any
posterior inference about the parameters of the model. We choose the value of δ
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Figure 6: Posterior mean (solid line in red) along with the correspondent 95% posterior bands
(dotted lines in blue) of the filtering distribution (ϕt,j |Dt) (left column) and the smoothing
distribution (ϕt,j |DT ) (right column).
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that maximizes the log-likelihood function

log(δ) =

T∑
t=1

log p(yt | Dt−1) (5)

where p(yt | Dt−1) = Tnt−1(ft, Qt). Figure 5 shows this log-likelihood function in
a grid of 1,000 point from 0.97 to 1. The value of δ that maximizes this function is
δ = 0.9998. Alternatively, we can choose that value of δ that minimizes the MSE;
this method leads to the same value. Recalling that Wt measures how quickly the
value of the current information Dt decays through time, since δ ≈ 1, then Wt ≈ 0
for all t, and therefore the system model is globally true (reliable).

Even though δ = 0.9998 is a value extremely close to one, we decide to perform
posterior inference over the parameters of model (4) as a first approach to unders-
tand the dynamic features of the system. To this end, we implement a modified
version of the Kalman Filter and the smoothing equations since v is unknown but
constant for all t (Prado and West, 2010, Sec. 4.3.2, p. 126). Figure 6 displays the
posterior mean along with the correspondent 95% posterior bands of the filtering
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Figure 7: Top panel: posterior mean (solid line in red) along with the correspondent 95%
posterior bands (dotted lines in blue) of the filtering distribution (v | Dt). Bottom panel: forecasts
(thick black) of the change of the U.S. 3-year Treasury constant maturity interest rate after the
week of September 10, 1999 (dotted line in red) along with 95% credible intervals (dashed lines
in blue).
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distribution (ϕt,j | Dt) and the smoothing distribution (ϕt,j | DT ). It takes about
100 weeks to the filtering distribution (ϕt,j | Dt) for each j = 1, 2, 3 to get infor-
med about the magnitude of the dynamic parameters, which stabilizes around the
correspondent Bayes estimate ϕ̂j bayes in model (1) (see part a. for details). From a
retrospective point of view, the smoothing distribution of the dynamic coefficients
captures this feature immediately and remains almost constant for all t. Note that
all the graphs in Figure 6 are given in the same scale. For completeness, Figure
7 shows the posterior mean of the filtering distribution (v | Dt) (which stabilizes
around the correspondent Bayes estimate v̂bayes in model (1) and remains almost
constant from week 100 onwards) and the forecasts for the next 10 weeks (which is
consistent with the predictions obtained in part a.iii.). We leave the discussion of
how to get the 10-step ahead forecasts, the description of the smoothing distribu-
tion (µt | DT ), and residual analysis for part b.ii., where we consider two discount
factors, one for each layer of model (4).

Now, we assume that vt is unknown and use a discount factor β ∈ (0, 1] to specify
this time-varying observational variance. In this way, we modify the Kalman Filter
accordingly and use the formulae to update nt and dt given in Prado and West
(2010, Sec. 4.3.7, p. 131). Once again, we select the appropriate value of δ and β
before performing any posterior inference about the parameters of the model. We
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Figure 8: Log-likelihood function of δ and β. The values of δ and β that maximize this function
(dotted line in red) in a bidimensional grid of 1, 0002 points from 0.97 to 1 are δ = 0.9998 and
β = 0.9830.
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choose the value of δ and β that maximizes the log-likelihood function given in (5)
but this time as a function of both δ and β, i.e.,

(α, β) = argmax
(δ,β)

T∑
t=1

log p(yt | Dt−1).

Figure 8 shows this log-likelihood function in a bidimensional grid of 1, 0002 points
from 0.97 to 1. The values of δ and β that maximize this function are δ = 0.9998
and β = 0.9830. This is consistent with the maximization when considering a
single discount factor in the system level of model 4.

Even though, the MSE criteria (not shown here) suggests a value for β around
0.9700 we follow a conservative approach by setting β = 0.9830. We now per-
form posterior inference over the parameters of model (4) with δ = 0.9998 and
β = 0.9830. Figure 9 displays the posterior mean along with the correspondent
95% posterior bands of the filtering distribution (ϕt,j | Dt) and the smoothing
distribution (ϕt,j | DT ). As expected (since δ ≈ 1 in both scenarios), Figure 6 and
Figure 9 are fairly similar, but the confidence bands in the latter are wider. This
is consistent with fact that now we are allowing vt to be time-varying in the obser-
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Figure 9: Posterior mean (solid line in red) along with the correspondent 95% posterior bands
(dotted lines in blue) of the filtering distribution (ϕt,j | Dt) (left column) and the smoothing
distribution (ϕt,j | DT ) (right column).
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Figure 10: Time series of the detrended weekly change series of the U.S. 3-year Treasury
constant maturity interest rate from March 18, 1988 to September 10, 1999 (solid line in gray)
and posterior mean (solid line in red) of the smoothing distribution (µt | DT ).

vation level of model (4). On the other hand, Figure 10 shows the posterior mean
of the smoothing distribution (µt | DT ). We see that the model does a reasonable
job in describing the process underlying the series. However, since the model is
not designed to capture additive outliers, it results in large residuals for some of
the observations (see Figure 12).

The first panel in Figure 11 exhibits the posterior mean of the filtering distribution
(v | Dt). As expected (since now we are considering a time-varying observational
variance), the posterior mean of this distributions is more dynamic than the one
presented in Figure 7, and is not clearly stabilized around a specific value. Note
also that de the confidence bands are wider than before. This time-varying ob-
servational variance allows the model to capture more signals from the process
underlying the series than a constant variance in the observational equation is
capable of. Recall that the moments of the h-step ahead forecast predictive distri-
bution (yt+h | Dt) are

ft(h) = F′
t+hat(h), qt(h) = F′

t+hRt(h)Ft+h + vt+h,

for h = 1, 2 . . . with initial values at(0) = mt and Rt(0) = Ct (see Prado and West
(2010, Sec. 4.3.4, p. 128 for details). Given the fact that these calculations require
that the future values of the variance components vt+h and Wt+h be known or
estimated up to the forecast horizon, we adopt the strategy proposed by West and
Harrison (1999, p. 199), in which we assume a conditional constant variance

Var (ωt+h | Dt) = Wt(h) = Wt+1.

Thus, this the step-ahead forecast distributions will be based on the addition of
evolution errors with same variance matrix Wt+1 for all h. Having this in mind,
the second panel in Figure 11 shows the forecasts for the next 10 weeks. We notice
that the confidence bands are narrower than before and therefore these predictions
are more accurate than the ones obtained in parts a.iii. and b.i.

Finally, Figure 12 shows a residual analysis of the residuals after fitting model 3
with time-varying observational variance. Note that in general we are having the
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Figure 11: Top panel: posterior mean (solid line in red) along with the correspondent 95%
posterior bands (dotted lines in blue) of the filtering distribution (v | Dt). Bottom panel: forecasts
(thick black) of the change of the U.S. 3-year Treasury constant maturity interest rate after the
week of September 10, 1999 (dotted line in red) along with 95% credible intervals (dashed lines
in blue).

same issues than before with model (1), because around weeks 65, 74, 201, 323,
418 (lines in blue), where residuals take the largest values, we still recognize am
explicit pattern which clearly suggests that the model is not able to detect outliers
effectively.

4. Time-varying model for detecting outliers

Now we consider the following model for detecting outliers (Tsay, 2010, p. 561):

yt = γtαt + xt + ϵt, ϵt
iid∼ N(0, 0.01) (6)

xt = ϕ1xt−1 + ϕ2xt−2 + ϕ3xt−3 + ηt, ηt
iid∼ N(0, w),

where γt
iid∼ Ber(0.2), and αt

iid∼ N(0, 0.1). This model allows additive outliers to oc-
cur at every time point with the probability of being an outlier for each observation
equal to 0.2. We have T = 600 observations in the series and N+N+3+1 = 2N+4
parameters, namely γ = (γ1, . . . , γT )

′, α = (α1, . . . , αT )
′, ϕ = (ϕ1, ϕ2, ϕ3)

′, and w.
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Figure 12: Residual analysis: Time series plot (top), ACF (middle), Q-Q plot (bottom left),
and histogram (bottom right) of the residuals obtained from fitting model 1.

The parameters γ and α are introduced by using the idea of data augmentation
with γt denoting the presence of absence of an additive outlier at time t, and αt is
the magnitude of the outlier at time t when it is present (Tsay, 2010, p. 561). This
very same model has also been consider extensively in Sosa and Buitrago (2022,
Ch. 3).

We want to obtain samples from the joint posterior p(γ,α,x,ϕ, w | y), where
x = (x1, . . . , xT )

′, and y = (y1, . . . , yT )
′. We assume that the prior distributions

are p(ϕ) = N(ϕ | 03, 0.25I3) and p(w) = IG(w | a0, b0) which are conjugate priors.
To implement a MCMC algorithm for model 6, we consider the joint posterior
distribution expressed as:

p(γ,α,x,ϕ, w | y) = p(y | γ,α,x) p(x | ϕ, w) p(γ) p(α) p(ϕ) p(w). (7)

This expression is particularly useful for deriving the full conditionals (see the
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Appendix for details).

Note that model (6) is a non-Gaussian DLM. However, conditional on γ, this
model can be written as a DLM as follows:

yt = F′θt + νt, νt ∼ N(0, vγt), (8)

θt = Gθt−1 + ωt, ωt ∼ N(03,Wt)

with

F = (1, 0, 0)′, θt = (xt, xt−1, xt−2)
′, vγt =

{
0.01, γt = 0;
0.11, γt = 1,

and

G =

ϕ1 ϕ2 ϕ3

1 0 0
0 1 0

 , ωt = (ηt, 0, 0)
′, Wt ≡ W =

w 0 0
0 0 0
0 0 0

 .

Thus, the model {F,G, vγt
,W} has a standard normal DLM structure conditional

on the latent parameters γt. We use this fact to develop the second step of the
MCMC algorithm described below. There we implement a FFBS algorithm (Prado
and West, 2010, p. 137) to get samples from p(θ1:T | γ,ϕ, w), t = 1 : T (notice
that getting samples from this distribution automatically allow us to draw samples
from p(x | γ,ϕ, w)).

Now, we describe the general form of the MCMC implemented in the next part
of the problem to obtain samples from the joint posterior given in (7). We derive
the full conditionals used in the algorithm looking at the dependencies in the full
posterior distribution 7 (see the Appendix for details). Let θ(m) denote the state
of parameter θ in the m-th iteration of the algorithm. The algorithm is as follows:

1. Initialize: sample γ
(0)
t ∼ Ber(0.2), t = 1 : T , ϕ(0) ∼ N(ϕ | 03, I3), and

w(0) ∼ IG(w | a0, b0).

2. Update γ(m−1),α(m−1),θ
(m−1)
t ,ϕ(m−1), w(m−1) as follows:

a) FFBS step: sample θ
(m)
t ∼ p(θ1:T | γ(m−1),ϕ(m−1), w(m−1),y), t = 1 :

T , via the following steps:

i) Use the DLM filtering equations to compute at, Rt, mt, and Ct,
for t = 1 : T .

ii) At time t = T sample θ
(m)
T ∼ N(θT | mT ,CT ).

iii) For t = (T − 1) : 0 sample θ
(m)
t ∼ N(θt | m∗

t ,C
∗
t ), where

m∗
t = mt +Bt(θt+1 − at+1), C∗

t = Ct −BtRt+1B
′
t,

with Bt = CtG
′
t+1R

−1
t+1.
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b) For t = 1 : T sample α
(m)
t ∼ p(αt | θ

(m)
t , γ

(m−1)
t ,y), where p(αt |

θt, γt,y) = N(αt | µt, σ
2
t ) with

σ2
t =

1

10(10γt + 1)
, µt = 100σ2

t γt(yt − θt,1).

c) For t = 1 : T sample γ
(m)
t ∼ p(γt | θ

(m)
t ,y), where p(γt | θt,y) =

Ber(γt | πt) with πt = P [γt = 1 | θt,y], i.e., γt is set to 1 or 0 with
probabilities defined in terms of the odds ratio

πt

1− πt
=

1

4
√
11

exp

{
−1

2
(yt − θt,1)

2(1/0.11− 1/0.01)

}

d) Sample ϕ(m) ∼ p(ϕ | θ(m)
1:T , w(m−1),y), where p(ϕ | θ1:T , w,y) = N(ϕ |

µ,Σ) with

Σ =

(∑T
t=1 θt,1θ

′
t−1

w
+ 4I3

)−1

, µ = Σ

(∑T
t=1 θt,1θt−1

w

)
.

e) Sample w(m) ∼ p(w | θ(m)
1:T ,ϕ(m),y), where p(w | θ1:T ,ϕ,y) = IG(w |

aw, bw) with

aw = a0 +
T

2
, bw = b0 +

1

2

T∑
t=1

(θt,1 − ϕ′θt)
2.

3. Cycle until achieve convergence.

Now, we implement the MCMC described in part i. In order to run the algorithm
we must pick appropriate values for a0 and b0. These hyperparameters control the
prior distribution of the scale parameter w, which directly impacts the evolution
of the system parameters in the conditional DLM 8. Recalling that the MLE of
the variance of the error in the AR(3) model 1 is vmle = 0.0128 (which is certainly
an overestimation of w), we weakly concentrate the prior distribution around this
value by using a0 = 3 and b0 = 0.0257: doing so we get that E (w | a0, b0) = vmle

with cv = 100%, e.i., a weak concentration of w around vmle.

We run the algorithm for 4,000 iterations but discard results of the first 1,000
iterations (burn-in period). In order to have approximately independent draws, we
select one sample from each 15 iterations, and a total of 201 samples are selected
altogether. Those 201 samples are approximately independently and identically
distributed according to the related posterior distribution and form the basis of
posterior inference.

Before making any inference based on the MCMC samples we determine if there are
any indications that the chains is not stationary. The chains achieve convergence
quickly and there does not seem to be any evidence that the chain has not achieved
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Figure 13: Stationary plots of some parameters in the model.

stationarity. Stationary plots of some parameters in the model are shown in Figure
13.

In what follows we summarize the posterior distributions of the parameters of the
model. Table 2 display Monte Carlo summaries to the posterior densities of ϕ
and w. This estimates are roughly consistent with the ones obtained with models

Parameter ϕ1 ϕ2 ϕ3 w
Mean 0.4711 0.0710 0.1540 0.0022
SD 0.1408 0.1751 0.1227 0.0004
Q2.5% 0.2074 -0.2426 -0.0727 0.0015
Q97.5% 0.7288 0.3817 0.3846 0.0031

Table 2: Posterior summaries of ϕ and w.
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Week 65 74 201 323 418
Probability 0.8209 0.9154 0.8060 0.9403 0.9055
Magnitude -0.2288 0.2745 0.2535 -0.3087 0.2989

Table 3: Posterior probability of being an outlier along with the posterior mean of outlier
magnitude at weeks 65, 74, 201, 323, 418.

(1) and (4). Now we center our attention in Figure 14. Panel (a) summarizes the
CDLM mean at the observation xt. Panel (b) shows the time plot of the posterior
probability of each observation being an additive outlier, and panel (c) exhibits
the posterior mean of outlier magnitude. There we summarize the posterior den-
sities P [γt = 1 | y] and P [αt | γt = 1,y], for t=1:T. From the probability plot we
identify 17 observations having posterior probability of being an outlier greater
than 0.5, and 5 of those observations with this probability greater than 0.8, na-
mely, observation at weeks 65, 74, 201, 323, 418. Magnitudes and corresponding
probabilities of being an outlier of these time points are given in Table 3. Tsay
(2010, p. 564) also classifies these points as outliers (employing a approach with
slightly differences) and highlight times t = 323 (May 20, 1994) and t = 201 (Ja-
nuary 17, 1992). At the former there was a 0.6% drop in the weekly interest rate
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Figure 14: Time plots of weekly change series of the U.S. 3-year Treasury constant maturity
interest rate from March 18, 1988 to September 10, 1999: (a) posterior mean of the CDLM
mean at the observation xt; (b) the posterior probability of being an outlier (the red dotted line
corresponds to 0.5 and the blue one to 0.8); (c) the posterior mean of outlier size; and (d) the
data (gray) and fitted values (blue).
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within two weeks, and at the later there was a jump of about 0.35% in the weekly
interest rate. In addition, the bottom panel of Figure 14 displays the original data
in gray and the fitted values in blue. We see that model 6 reasonably captures the
“volatility” that models 1 and 3 do not.
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Figure 15: Residual analysis: Time series plot (top), ACF (middle), Q-Q plot (bottom left),
and histogram (bottom right) of the residuals obtained from fitting model 6.

Finally, Figure 15 shows a residual analysis of the residuals after fitting model
6. Note that the time series of the residuals does not exhibit a strong trend,
seasonality, or other suspicious pattern. Furthermore, the ACF does not reveal
any significant correlation in any lag of the series of the residuals which strongly
suggests that the series correspond to an independent sample. Then, looking at
the Q-Q plot and the histogram of the residuals, it seems that the residuals indeed
correspond to a i.i.d. sample from a normal distribution (note the improvement in
the tails in comparison to model 1 for example). Thus, we are confident about the
good performance of model 6 to correctly characterize the data.
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5. Discussion

There exists a wide array of time series data types, each addressed in extensive
statistical literature that covers most common scenarios. The dynamic strategy
discussed here offers a highly flexible method for characterizing temporal settings,
particularly those where the evolution of the response variable changes over time.
This approach provides a comprehensive description of how variables interact and
change throughout the course of the data series, making it particularly suitable
for modeling complex systems and phenomena that exhibit varying dynamics over
time.

The fully Bayesian approach discussed in this context enables a comprehensive
characterization of the time series process while also facilitating accurate pre-
dictions. In addition to this approach, alternative strategies encompass dynamic
frameworks incorporating dependencies on covariates, as well as Bayesian nonpa-
rametric methods. These methods offer diverse approaches to modeling time series
data, accommodating various complexities and nuances present in real-world da-
tasets.
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A. Notation

The cardinality of a set A is denoted by |A|. If P is a logical proposition, then
1 {P} = 1 if P is true, and 1 {P} = 0 if P is false. ⌊x⌋ denotes the floor of x,
whereas [n] denotes the set of all integers from 1 to n, i.e., {1, . . . , n}. The Gamma
function is given by Γ(x) =

∫∞
0

ux−1 e−u du. Matrices and vectors with entries
consisting of subscripted variables are denoted by a boldfaced version of the letter
for that variable. For example, x = (x1, . . . , xn) denotes an n × 1 column vector
with entries x1, . . . , xn. We use 0 and 1 to denote the column vector with all entries
equal to 0 and 1, respectively, and I to denote the identity matrix. A subindex
in this context refers to the corresponding dimension; for instance, In denotes the
n× n identity matrix. The transpose of a vector x is denoted by xT; analogously
for matrices. Moreover, if X is a square matrix, we use tr(X) to denote its trace

and X−1 to denote its inverse. The norm of x, given by
√
xTx, is denoted by ∥x∥ .

Now, we present the form of some standard probability distributions used in this
article:

Multivariate normal:

A d × 1 random vector X = (X1 . . . , Xd) has a multivariate Normal distri-
bution with parameters µ and Σ, denoted by X | µ,Σ ∼ Nd(µ,Σ), if its
density function is

p(x | µ,Σ) = (2π)−d/2 |Σ|−1/2 exp
{
− 1

2 (x− µ)TΣ−1(x− µ)
}
.

Inverse Gamma:

A random variable X has an Inverse Gamma distribution with parameters
α, β > 0, denoted by X | α, β ∼ IG(α, β), if its density function is

p(x | α, β) = βα

Γ(α)
x−(α+1) exp {−β/x}, x > 0 .
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