Spatial prediction of a scalar variable based on data of a functional random field

Ramón Giraldo, Pedro Delicado, Jorge Mateu


Kriging and cokriging and their several related versions are techniques widely known and used in spatial data analysis. However, when the spatial data are functions a bridge between functional data analysis and geostatistics has to be built. I give an overview to cokriging analysis and multivariable spatial prediction to the case where the observations at each sampling location consist of samples of random functions. I extend multivariable geostatistical methods to the functional context. Our cokriging method predicts one variable at a time as in a classical multivariable sense, but considering as auxiliary information curves instead of vectors. I also give an extension of multivariable kriging to the functional context where is defined a predictor of a whole curve based on samples of curves located at a neighborhood of the prediction site. In both cases a non-parametric approach based on basis function expansion is used to estimate the parameters, and I prove that both proposals coincide when using such an approach. A linear model of coregionalization is used to define the spatial dependence among the coefficients of the basis functions, and therefore for estimating the functional parameters. As an illustration the methodological proposals are applied to analyze two real data sets corresponding to average daily temperatures measured at 35 weather stations located in the Canadian Maritime Provinces, and penetration resistance data collected at 32 sampling sites of an experimental plot.

Texto completo:

PDF (English)


Bogaert, P. (1996), ‘Comparison of kriging techniques in a space-time context’, Mathematical Geology 28(1), 73–86.

Borgault, G. & Marcotte, D. (1991), ‘The multivariable variogram and its application to the linear coregionalization model’, Mathematical Geology 23(10), 899–928.

Cardot, H., Crambes, C., Kneip, A. & Sarda, P. (2007), ‘Smoothing spline estimators in functional linear regression with errors in variables’, Computational Statistics & Data Analysis 51(10), 4832–4848.

Chan, K., Oates, A., Swan, A., Hayes, R., Dear, B. & Peoples, M. (2006), ‘Agronomic consequences of tractor wheel compaction on a clay soil’, Soil & Tillage Research 89, 13–21.

Cressie, N. (1993), Statistic for spatial data, Jhon Wiley & Sons, New York. Cuevas, A., Febrero, M. & Fraiman, R. (2004), ‘An anova test for functional data.’, Computational Statistics & Data Analysis 47, 111–122.

Ferraty, F. & Vieu, P. (2003), ‘Curves discrimination. A non parametric functional approaches’, Computational Statistics & Data Analysis 44, 161–173.

Ferraty, F. & Vieu, P. (2006), Non parametric functional data analysis. Theory and practice, Springer, New York.

Freddi, O., Carvalho, M., Versonesi, M., Guilherme, J. & Carvalho, J. (2006), ‘Relationship between maize yield and soil mechanical resistance to penetration under conventional tillage’, Engenharia Agr´ıcola 26(1), 113–121.

Galindo, J. (2004), Desarrollo de un modelo explicativo del crecimiento y producción de la arveja en función de variables edáfico-ambientales., PhD thesis, National University of Colombia.

Giraldo, R. (2009), Geostatistical analysis of functional data, PhD thesis, Universitat Politécnica de Catalunya.

Giraldo, R., Delicado, P. & Mateu, J. (2010), ‘Continuous time-varying kriging for spatial prediction of functional data: An environmental application’, Journal of Agricultural, Biological, and Environmental Statistics 15(1), 66–82.

Giraldo, R., Delicado, P. & Mateu, J. (2011), ‘Ordinary kriging for function-valued spatial data’, Environmental and Ecological Statistics 18, 411–426.

González-Manteiga, W. & Vieu, P. (2007), ‘Statistics for functional data’, Computational Statistics and Data Analysis 51, 4788–4792.

Goulard, M. & Voltz, M. (1993), Geostatistical interpolation of curves: A case study in soil science, in A. Soares, ed., ‘Geostatistics Tr´oia ´92’, Vol. 2, Kluwer Academic Press, pp. 805–816.

Hall, P. & Hosseini-Nassab, M. (2006), ‘On properties of functional principal components analysis’, Journal of the Royal Statistical Society, Series B 68, 109–126.

Hollander, T. & Wolfe, D. (1999), Nonparametric Statistical Methods, John Wiley & Sons, New York.

Leiva, F. (2003), ‘Manejo sostenible del suelo bajo la concepción de agriculturade precisi´on’. Research project partially supported by COLCIENCIAS, Colombia.

Malfait, N. & Ramsay, J. (2003), ‘The historical functional linear model’, The Canadian Journal of Statistics 31(2), 115–128.

Matérn, B. (n.d.), Spatial variation, Springer-Verlag.

Myers, D. (1982), ‘Matrix formulation of Co-kriging’, Mathematical Geology 14(3), 249–257.

Nerini, D., Monestiez, P. & Manté, C. (2010), ‘Cokriging for spatial functionaldata’, Journal of Multivariate Analysis 101, 409–418.

Pebesma, E. (2004), ‘Multivariable geostatistics in S. The gstat package’, Computers & Geosciences 30, 683–691.

R Development Core Team (2005), R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN3-900051-07-0,

Ramsay, J. & Silverman, B. (2005), Functional data analysis. Second edition, Springer,New York.

Stanley, D. (2002), Canada´s Maritime provinces. First edition, Lonely Planet Publications, Marybirnong.

Ver Hoef, J. & Barry, R. (1998), ‘Constructing and fitting models for cokriging and multivariable spatial prediction’, Journal of Statistical Planning and Inference 69, 275–294.

Ver Hoef, J. & Cressie, N. (1993), ‘Multivariable spatial prediction’, Mathematical Geology 25(2), 219–240.

Wackernagel, H. (1995), Multivariable geostatistics:An introduction with applications, Springer-Verlag, Berlin.

Yamanishi, Y. & Tanaka, Y. (2003), ‘Geographically weighted functional multiple regression analysis: A numerical investigation.’, Journal of Japanese Society

of Computational Statistics 15, 307–317.

Enlaces refback

  • No hay ningún enlace refback.

ISSN: 2027-3355 
ISSN electrónico: 2339-3076
DOI: 10.15332/s2027-3355