Comparación entre árboles de regresión CART y regresión lineal

Juan Felipe Díaz Sepúlveda, Juan Carlos Correa

Resumen


La Regresión lineal es el método más usado en estadística para predecir valores de variables continuas debido a su fácil interpretación, pero en muchas situaciones los supuestos para aplicar el modelo no se cumplen y algunos usuarios tienden a forzarlos llevando a conclusiones erróneas. Los árboles de regresión CART son una alternativa de regresión que no requiere supuestos sobre los datos a analizar y es un método de fácil interpretación de los resultados. En este trabajo se comparan a nivel predictivo la Regresión lineal con CART mediante simulación. En general, se encontró que cuando se ajusta el modelo de regresión lineal correcto a los datos, el error de predicción de regresión lineal siempre es menor que el de CART. También se encontró que cuando se ajusta erróneamente un modelo de regresión lineal a los datos, el error de predicción de CART es menor que el de regresión lineal sólo cuando se tiene una cantidad de datos suficientemente grande.

Palabras clave


Simulación; Error de predicción; Regresión Lineal; Árboles de clasificación y Regresión CART

Texto completo:

PDF BibTex


DOI: http://dx.doi.org/10.15332/s2027-3355.2013.0002.05

Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM

Enlaces refback

  • No hay ningún enlace refback.


ISSN: 2027-3355 – ISSN Online: 2339-3076